
Georges Miranda Spyrides

Binary Matrix Factorization Post-processing
and Applications

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Informática.

Advisor : Prof. Hélio Côrtes Vieira Lopes
Co-advisor: Prof. Marcus Vinicius Soledade Poggi de Aragão

Rio de Janeiro
August 2023

Georges Miranda Spyrides

Binary Matrix Factorization Post-processing
and Applications

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Informática. Approved by the Examina-
tion Committee:

Prof. Hélio Côrtes Vieira Lopes
Advisor

Departamento de Informática – PUC-Rio

Prof. Marcus Vinicius Soledade Poggi de Aragão
Co-advisor

Departamento de Informática – PUC-Rio

Prof. Bruno Fânzeres dos Santos
Departamento Industrial – PUC-Rio

Prof. Fernanda Araújo Baião
Departamento Industrial – PUC-Rio

Prof. Cassio Freitas Pereira de Almeida
ENCE

Prof. Alex Laier Bordignon
UFF

Prof. Eduardo Camponogara
UFSC

Rio de Janeiro, August 24th, 2023

All rights reserved.

Georges Miranda Spyrides

Graduado em engenharia de produção pela Universidade Fed-
eral do Rio de Janeiro e mestre em Informática pela Pontifícia
Universidade Católica do Rio de Janeiro.

Bibliographic data
Spyrides, Georges

Binary Matrix Factorization Post-processing and Applica-
tions / Georges Miranda Spyrides; advisor: Hélio Côrtes Vieira
Lopes; co-advisor: Marcus Vinicius Soledade Poggi de Aragão.
– 2023.

112 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio
de Janeiro, Departamento de Informática, 2023.

Inclui bibliografia

1. Informática – Teses. 2. Fatoração de Matrizes Binárias.
3. Fatoração de Matrizes Não Negativas. 4. Mineração de
Processos. I. Lopes, Hélio. II. Poggi, Marcus. III. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. IV. Título.

CDD: 004

A Pedrinho e Helen por um amor sem fim. A meus pais e irmã pela força
para voltar para o meu rumo.

Acknowledgments

To my advisors Professors Hélio Lopes and Marcus Poggi for the encourage-
ment and partnership in conducting this work.

To CNPq and PUC-Rio, for the grants provided, without which this work could
not have been accomplished.

To Helen Cristina and Pedro, for all the love in the world and for the patience
for the time I invested in this thesis.

To my parents and sister, for the education, attention, and care at all times.

To my friends and colleagues from PUC-Rio. It’s a pleasure to study and work
with people who are so capable and so generous with their own time. I would
especially like to thank Jonatas Grosman for helping me both directly and
indirectly in this work.

To the professors who participated in the Examination Committee.

To all friends and family who in one way or another encouraged or helped me.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Abstract

Spyrides, Georges; Lopes, Hélio (Advisor); Poggi, Marcus (Co-Advisor).
Binary Matrix Factorization Post-processing and Applications.
Rio de Janeiro, 2023. 112p. Tese de Doutorado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Novel methods for matrix factorization introduce constraints to the
decomposed matrices, allowing for unique kinds of analysis. One significant
modification is the binary matrix factorization for binary matrices. This
technique can reveal common subsets and mixing of subsets, making it useful
in a variety of applications, such as market basket analysis, topic modeling,
and recommendation systems. Despite the advantages, current approaches face
a trade-off between accuracy, scalability, and explainability. While gradient
descent-based methods are scalable, they yield high reconstruction errors
when thresholded for binary matrices. Conversely, heuristic methods are not
scalable. To overcome this, this thesis propose a post-processing procedure
for discretizing matrices obtained by gradient descent. This novel approach
recovers the reconstruction error post-thresholding and successfully processes
larger matrices within a reasonable timeframe. We apply this technique to
many applications including a novel pipeline for discovering and visualizing
patterns in petrochemical batch processes.

Keywords
Binary Matrix Factorization; Non-negative matrix factorization; Process

Mining.

Resumo

Spyrides, Georges; Lopes, Hélio; Poggi, Marcus. Pós-processamento
de Fatoração Binária de Matrizes e Aplicações. Rio de Janeiro,
2023. 112p. Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Novos métodos de fatoração de matrizes introduzem restrições às matri-
zes decompostas, permitindo tipos únicos de análise. Uma modificação signifi-
cativa é a fatoração de matrizes binárias para matrizes binárias. Esta técnica
pode revelar subconjuntos comuns e mistura de subconjuntos, tornando-a útil
em uma variedade de aplicações, como análise de cesta de mercado, modelagem
de tópicos e sistemas de recomendação. Apesar das vantagens, as abordagens
atuais enfrentam um trade-off entre precisão, escalabilidade e explicabilidade.
Enquanto os métodos baseados em gradiente descendente são escaláveis, eles
geram altos erros de reconstrução quando limitados para matrizes binárias. Por
outro lado, os métodos heurísticos não são escaláveis. Para superar isso, essa
tese propõe um procedimento de pós-processamento para discretizar matrizes
obtidas por gradiente descendente. Esta nova abordagem recupera o erro de
reconstrução após a limitação e processa com sucesso matrizes maiores dentro
de um prazo razoável. Testamos esta técnica a muitas aplicações, incluindo um
novo pipeline para descobrir e visualizar padrões em processos petroquímicos
em batelada.

Palavras-chave
Fatoração de Matrizes Binárias; Fatoração de Matrizes Não Negativas;

Mineração de Processos.

Table of contents

1 Introduction 16
1.1 The outer product view 18
1.2 Objectives and Scope 21
1.3 Work organization 24

2 Related Work 26
2.1 Algorithmic approaches 26
2.2 Applications 29
2.3 The gap in the literature 31

3 Method and proposed algorithms 32
3.1 Formulation 32
3.2 The column sub-problem 34
3.3 Column Sub-Problem Example 35
3.4 The Set representation 37
3.5 Set Notation Nomenclature 41
3.6 The example revisited 42
3.7 The BackColumn algorithm for the column sub-problem 44
3.8 The intuition behind the cut-off gains 46
3.9 Proposed pipeline and the BackDisc Algorithm 48
3.10 The PCA/SVD lowerbound 51
3.11 The problem of the Boolean Matrix Multiplication 51

4 Small Synthetic Cases and Algorithm Comparison 54
4.1 Case A 54
4.2 Case B 56
4.3 Case C 58

5 Main Application: Process Mining for Petrochemical Batch
Processes 61

5.1 Pipeline 62
5.2 Experiments 69

6 Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 76

6.1 Comparison to other datasets in the literature 77
6.2 Gene Expression 78
6.3 Topic modelling 81
6.4 Recommendation Systems 84

7 Discussion 87
7.1 Summary of results 87
7.2 Strengths and Weaknesses of this approach 90
7.3 Future Work 91

8 Bibliography 92

A Gantt Charts 100

B Detailed Result Tables 109

List of figures

Figure 3.1 Example recursion tree of the main BackColumn procedure. 47
Figure 3.2 Example recursion tree revisited using the corollary 3.5. 47
Figure 3.3 Example recursion tree revisited using the corollary 3.6. 48
Figure 3.4 The BackDisc pipeline 49

Figure 5.1 Our proposed Gantt pipeline for obtaining Gantt charts using
PCA and BMF 62
Figure 5.2 Principal component of the training data in the MNIST
dataset as an intuition. 64
Figure 5.3 The Gantt pipeline’s intermediate representation, in which
the X axis is time spanning a duration of 25 days. At the top, in blue is the
line chart of the first column U1 in the transformed space by PCA, and in
gold is a polynomial smoothing filter of this column U1. At the bottom is
the transposed view of matrix W , where entries wtv = 1 are represented in
yellow or purple otherwise. The red vertical lines represent the segmentation
of production cycles in time. 69
Figure 5.4 Representation of a delayed coker unit by (COMMONS,
2007). It is a semi-batch process in which heavy oil residues are thermally
cracked and then converted into solid Coke and vapor inside coke drums
in the center. Then, a continuous stream of heavy oil is fed into a switch
alternating between the two coke drums. 70
Figure 5.5 Our pipeline’s final representation, the Gantt Chart. Lines
indicate groups of valves, and arrows indicate frequent maneuvers to change
between groups. Notice that the chart is a generic representation of the state
of groups of valves combining six 48 hours cycles in refinery 1 during the
fourth selected time period. 73
Figure 5.6 The same chart for the fifth selected time period in refinery
2. The chart is a generic representation of forty 32-hour production cycles. 73

Figure 6.1 Results showing time, sparsity, and reconstruction error of the
tests across the 31 instances. In our test, we compare the PCA lower bound
in blue, the gradient descent approach described in (ZHANG et al., 2007)
and implemented by (ZITNIK; ZUPAN, 2012) in yellow, the thresholding
with the minimum reconstruction error found in red, and our backtracking
discretization algorithm(BackDisc) in green. The main result is that we can
discretize the matrices while maintaining the reconstruction error at the
same level as the gradient descent approach; the alternative was to threshold
matrices with a significant loss. 80

Figure A.1 Gantt chart of the first cohesive time period selected of the
first refinery, comprehending 9 production cycles. 100
Figure A.2 Gantt chart of the second cohesive time period selected of
the first refinery, comprehending 7 production cycles. 101
Figure A.3 Gantt chart of the third cohesive time period selected of the
first refinery, comprehending 6 production cycles. 101

Figure A.4 Gantt chart of the fourth cohesive time period selected of the
first refinery, comprehending 6 production cycles. 102
Figure A.5 Gantt chart of the fifth cohesive time period selected of the
first refinery, comprehending 15 production cycles. 102
Figure A.6 Gantt chart of the sixth cohesive time period selected of the
first refinery, comprehending 7 production cycles. 103
Figure A.7 Gantt chart of the first cohesive time period selected of the
second refinery, comprehending 8 production cycles. 103
Figure A.8 Gantt chart of the second cohesive time period selected of
the second refinery, comprehending 13 production cycles. 104
Figure A.9 Gantt chart of the third cohesive time period selected of the
second refinery, comprehending 23 production cycles. 104
Figure A.10 Gantt chart of the fourth cohesive time period selected of the
second refinery, comprehending 40 production cycles. 105
Figure A.11 Gantt chart of the fifth cohesive time period selected of the
second refinery, comprehending 47 production cycles. 105
Figure A.12 Gantt chart of the sixth cohesive time period selected of the
second refinery, comprehending 20 production cycles. 106
Figure A.13 Gantt chart of the seventh cohesive time period selected of
the second refinery, comprehending 6 production cycles. 106
Figure A.14 Gantt chart of the eighth cohesive time period selected of the
second refinery, comprehending 28 production cycles. 107
Figure A.15 Gantt chart of the ninth cohesive time period selected of the
second refinery, comprehending 15 production cycles. 107
Figure A.16 Gantt chart of the tenth cohesive time period selected of the
second refinery, comprehending 11 production cycles. 108
Figure A.17 Gantt chart of the eleventh cohesive time period selected of
the second refinery, comprehending 21 production cycles. 108

List of tables

Table 5.1 Datasets characteristics 71
Table 5.2 Runtime performance metrics. We omitted the benchmark
running times. All of the GreConD were below 1 per second, and all
topFiberM were all below .1 per second. 72

Table 6.1 Comparison of time and error between our BackDisc pipeline
and the GreConD and TopFiberM algorithms. We apply them to the
instances described in (DESOUKI; RöDER; NGOMO, 2019) and the error
using the Frobenius norm with the regular matrix multiplication as discussed
in chapter 3. 78

List of algorithms

Algorithm 1 Our proposed BackColumn algorithm for the column sub-
problem 45

Algorithm 2 The Thresholding search algorithm, the second step of
the BackDisc pipeline. 49

Algorithm 3 Our proposed BackDisc algorithm that uses the BackCol-
umn algorithm for recovering the thresholding error loss. 50

List of Abreviations

BackColumn – Backtracking algorithm for the column sub-problem

BackDisc – Backtracking algorithm for BMF Discretization

BMF – Binary Matrix Factorization

BoolMM – Boolean Matrix Multiplication

OF – Objective Function

PCA – Principal Component Analysis

SavGol – Savitzky-Golay polynomial filter

SVD – Singular Value Decomposition

If you can dream—and not make dreams
your master;

If you can think—and not make thoughts
your aim; [...]

Yours is the Earth and everything that’s in it,
And—which is more—you’ll be a Man, my

son!

Rudyard Kipling, If.

1
Introduction

Recent progress in smartphones, internet-of-things devices, and their
use of sensors, precision medicine, and social media have brought a vast
range of datasets to the public. Frequently the data is about the relationship
between consumers and products, entities to another entity, and observations
to some features. Even in unusual settings such as text mining, we are used
to transforming data to vector representations, such as the count of specific
words (bag-of-words) or the presence of words in binary vectors, often called
one-hot encoding.

An approach to discovering these datasets’ underlying structure is matrix
factorization. The most common method is the principal component analysis
(PCA). The PCA is an algorithm for capturing greedily the variance of a given
matrix, constructing the best low-rank approximation rank by rank. Thus the
PCA reconstruction produces the best real-valued approximation for any given
matrix (ECKART; YOUNG, 1936) under the Frobenius or 2-norm. This is a
result we later use for comparison.

Let A be a real-valued matrix and G be the desired rank for an
approximation. The PCA algorithm returns orthonormal matrices U and V ,
and a diagonal matrix Σ that, when multiplied as in U · Σ · V T = Aapprox.
This decomposition can be used for signal/image compression, embedding
observations in a lower dimensional and orthogonalized space, enhancing the
predictive power of simple machine learning methods such as decision trees, and
unsupervised outlier detection, among others (WOLD; ESBENSEN; GELADI,
1987).

Newer methods change the unconstrained setting of the PCA to obtain
decomposed matrices with unique properties. Popular methods combine in-
troducing sparseness-inducing mechanisms or relaxing the orthogonality for
just searching for independence between components. A particularly power-
ful constraint is allowing the factorized matrices to just positive entries. The
non-negative constraint forces the reconstruction to rely only on basic addi-
tion. Therefore, each component must assume parts of the objects expressed
in given matrices. Lee and Seung (LEE; SEUNG, 1999) explain this effect
in greater detail and how these matrices produce explainable results in real
settings.

In an even more constrained setting, authors such as Zhang et al.
(ZHANG et al., 2007) (ZHANG et al., 2010) and Miettinen et al. (MIETTI-

Chapter 1. Introduction 17

NEN et al., 2008) describe a binary matrix factorization for binary matrices.
Given a matrix with binary (or boolean) entries A[m×n], the binary matrix
factorization obtains ideally two also binary matrices W[m×g] and H[g×n] that
when multiplied together are a rank-g approximation to A.

Binary matrices can be used to encode a myriad of problems. Binary
vectors can be used to represent the presence of an item in a set. The resulting
matrices of the decomposition reveal common subsets and mixing of subsets
to approximate each original set in the decomposed matrix. Applications
that benefit from this form of interpreting the decomposition are market
basket analysis, topic modeling in text mining, microarray gene expression
for sample and genes biclustering, any problem using categorical features for
many observations, recommendation systems based on discrete features of
user behavior, the relationship between entities such as friendships in social
networks.

In a more general setting of a table with observations in the rows and
binary features in the columns, such as the presence of a specific word in a
document, or purchase of an item in one shopping cart, or the presence of a
category in a categorical variable, we can interpret of matrix H as a common
subset of features and matrix W as a mixing matrix that shows which subsets
combined give an approximation to a specific observation. Common subsets of
features obtained in matrix H can be used later to decide which products to
place together in an actual store or web interface, common words in a topic
inside a text corpus. The mixing matrix W can give statistics of the most
common subsets and clustering of observations based on common subsets.

In an entity relationship setting such as in friendships in social networks,
or movies watched on some streaming platform, we imagine that the given
matrix A represents with binary entries the relationship of entities in the rows
(frequently users) to another entity in the columns (such as movies watched,
product purchased, celebrity liked, another user followed). This setting can
be modeled as a bipartite graph. The binary matrix factorization can be
interpreted as detecting communities (bicliques) in these bipartite settings.
For instance, almost all inside a group users in the rows in which the first
column of W is equal to one have watched almost all movies in the group
where the first row of H have entries equal to one. Thus one could find which
groups of users have watched which group of movies and strongly recommend
missing entries to users based on their close peer’s preferences.

Therefore, there is a great benefit to analyzing the structure of binary
matrices through the lens of binary matrix factorization. What limits its wide
adoption in a real setting is the practical trade-off of current approaches.

Chapter 1. Introduction 18

Approaches that can handle real-world sized problems, such as those described
in Zhang et al. (ZHANG et al., 2007) and implemented by Zitnik and Zupan in
their software package Nimfa (ZITNIK; ZUPAN, 2012), are based on gradient
descent methods, and their response is almost binary but still fractional.

These matrices are obtained by gradient descent; when thresholded to
obtain truly binary matrices, the reconstruction errors increase so that the
reconstructed matrices no longer represent the original matrices. For natural
settings where interpreting the problem as subsets of elements are lost to
this approach. Other approaches, such as those described by Miettinen et
al. (MIETTINEN et al., 2008), are truly binary but do not scale outside of
matrices in a few hundred rows and columns for ranks G over 20.

Our contribution is a post-processing procedure for discretizing matrices
obtained by gradient descent. This algorithm recovers the reconstruction error
after the thresholding in our experimental setting. We were able to process in
reasonable time matrices with thousands of rows and columns and a rank of
up to 50.

1.1
The outer product view

To introduce the terminology used throughout this thesis and to build
some intuition, we review the matrix multiplication through the lens of the
outer product. The general public is more used to the inner product of matrices
to calculate each position of the resulting matrix. The outer product view
produces rank-one matrices, or "components" as we call them, and they are
summed to produce the final multiplication. The components view makes some
inner patterns more apparent for practical application.

The multiplication of binary matrices produces an interesting pattern.
In particular when analyzed through the lens of the outer product. In the
example below in equation 1-2, we call the first two matrices being multiplied
as W and H, and the final product we call A. Notice that usually, we think
of matrix multiplication through the lens of the inner product (rows times
columns) instead of the outer product (columns times rows). To make it clear,
we highlight the columns of W in different colors and the rows of H in different
colors.

The outer product of two vectors, wblue (a column vector) and hblue (a
row vector), results in a rank-one matrix. If we take the columns of W and rows
of H as these vectors, the product W ·H results in the sum of several rank-one
matrices, where each rank-one matrix is the outer product of a column of W

and a row of H. Each rank-one matrix captures a specific feature present in

Chapter 1. Introduction 19

the resulting matrix A.



1 0
1 0
0 1
0 0
1 0


·

 1 1 0 0 0
0 0 0 1 1

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0


+



0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0


(1-1)

=



1 1 0 0 0
1 1 0 0 0
0 0 0 1 1
0 0 0 0 0
1 1 0 0 0


(1-2)

Suppose that matrix A represents in its rows users in a streaming
platform, and the columns of matrix A represent the movies in this platform.
Each entry carries information about whether the user in row m has seen the
movie in column n. Therefore, the entry amn is one if the user m has seen
movie n.

We can notice that users {1, 2, 5} have watched movies {1, 2}, forming the
pattern highlighted in blue. Also, user 3 has watched movies {4, 5}, composing
the pattern highlighted in orange. If we go back to the matrices W and H,
this description of groups of users who have watched the same movies appear
in each pair of column of W associated with the row of H. These patterns
are useful for analyzing a situation with many users and movies. An analyst
could figure out what users to advertise a new release based on groups and
preferences, or could figure a way of categorizing movies in his base.

Thus, it is interesting to make the reverse operation, that means, given
a matrix A carrying the relationship of users and movies to decompose them
into these patterns, or components or bicliques as we shall call them from now
on.

The matrix A could represent other things. It could represent in the
columns items available in a supermarket, and in the rows each shopping
basket. Then, matrix H would represent groups of items usually bought
together in each row and in matrix W the groups of items each user bought.
One could also cluster together users that purchased the same group observing
the columns of W .

Chapter 1. Introduction 20

1

2

5

4

3

1

2

3

4

5

User

Shopping Cart

Time-stamps

Patient

Movie

Items in Shelf

Valve

Genetic Marker

To generalize, we can think, as in the picture above, that in the relation-
ship between two entities we are seeking for groups of observations of entity
in the left that have relationship with all obeservations in a group from the
entity in the right. Thus, we seek biclusters in a bipartite setting.

This proposed reverse operation is the objective of the binary factoriza-
tion and the main subject of this thesis. The structure revealed in matrices W

and H shows relationship patterns between two entities.
Let us analyze one more example in 1-4. Here the multiplication of W

and H produces components that over-cover the central position of the matrix
(highlighted with pink).



1 0
1 0
1 1
0 1
0 0


·

 1 1 1 0 0
0 0 1 1 1

 =



1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0


+



0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 0 0 0


(1-3)

=



1 1 1 0 0
1 1 1 0 0
1 1 2 1 1
0 0 1 1 1
0 0 0 0 0


(1-4)

This effect of over-covering a position has some interesting consequences.
The multiplication of binary matrices can produce non-binary matrices. Thus
if the resulting matrix A had a one in the central position instead of two, and
we were to decompose the matrix, the decomposition into W and H wouldn’t
be perfect because the reconstruction would have these two in the central

Chapter 1. Introduction 21

position. Thus the factorization doesn’t produce an ideal reconstruction. And
the quality metric of the reconstruction has to consider the cost of over-covering
a position with a 1 or a 0, cost of under-covering a position with a 1.

Our proposed algorithm pipeline can mine large matrices, with a com-
paratively large number of components with a lower error than other matrices

1.2
Objectives and Scope

This thesis is has aspects unsupervised machine learning, consequently
its value is measured on the possibility of applications in many situations.
Naturally, some applications will call for an adaptation. We observe a large
variability in approaches to this problem and a large variability in evaluation
metrics.

Our definition of scope considered that, in practice, binary decomposi-
tions have a simultaneous need for accuracy, scalability, and explainability.
It is important for factorized matrices to accurately reconstruct the original
matrices. Also, it is important to scale the approaches to large matrices and
factorizations of larger ranks. More ranks mean more rank-one matrix explain-
ing the solutions, and more patterns mined.

Finally, explainability calls for two qualitative aspects. One of them is
the ability to translate binary vectors to sets of items. Therefore the need for
strictly binary factors in both factorized matrices W and H. The other aspect
is minimizing the ambiguity of causes, which usually manifests as overcovering
positions in the reconstruction of the given matrix A.

Solution methods based on gradient descent and alternating least-squares
produce near-binary real-valued matrices with high accuracy and highly scal-
able solutions. However, they suffer from a decision problem. If the application
needs an enumeration of items in each component, the usual route is to consider
items above a certain threshold t. In the literature and our tests, we observe
that any approach created to this thresholding profoundly deteriorates the
accuracy of the problem.

Heuristic methods usually choose between greedy behavior or an in-
tractable combinatorial search space. Greedy approaches typically find bi-
cliques or dense cores, but they fail to take advantage of factorization to larger
ranks. They usually find dense cores and cannot get better past a certain rank.
So they find dense patterns and stop early.

Our objective was to answer the following main research question: Is
it possible to solve the problem of discretizing near-binary factorizations by
recovering the typical explosion in error when thresholding? This way, we

Chapter 1. Introduction 22

wanted to explore the efficiency of gradient descent and alternating least
squares methods and discretize them without the usual loss in accuracy of
the simple thresholding. The discretization may pave the way for unifying the
chasm in the literature between discrete methods and continuous methods.

We had a secondary objective of unifying the continuous-first approaches
in the literature with discrete methods. Some of the challenges was proving that
a common measure used by the literature has essential flaws. For instance,
it does not allow for comparing with continuous factorization such as the
PCA, NMF or even continuous approximate versions of BMF. Additionally it
hides the effect of overcovering, allowing for algorithms that tend to produce
components with large intersections, thus ambiguous answers.

Other secondary objectives were application-related. Our main applica-
tion to process mining had its own challenges. For instance, we had the goal of
discovering how to cluster valves and represent their pattern in time, with un-
derstandable representation. Our approach to the binary matrix factorization
was essential to achieve this goal, and the crucial step in a larger solution, as
shown in chapter 5.1.1.

1.2.1
Our approach and main contribution

We present a method for recovering error for near binary factorizations in
a reasonable time, for matrices of tens of thousands of rows and thousands of
columns, and for a decomposition rank of up to 50. The recovery is particularly
interesting for using gradient-descent methods that scale well in practice and
have high accuracy before discretizing. These methods also scale to larger
ranks better than the heuristic approaches because they have a top-down
construction method for learning the components.

Compared to other approaches, our proposed pipeline has a compelling
mix of accuracy, scalability, and explainability.

1.2.2
Measuring the quality of the results

We use the Frobenius relative error using standard matrix multiplication,
as opposed to boolean matrix multiplication. The Frobenius norm of a matrix,
also known as the Euclidean norm or the 2-norm, is a measure of the
"magnitude" or "size" of the matrix.

If A is a matrix with m rows and n columns, and aij denotes the entry
in the ith row and jth column, the Frobenius norm of A is defined as:

Chapter 1. Introduction 23

||A||F =
√√√√ m∑

i=1

n∑
j=1

a2
ij

If we want to measure the distance of a matrix A and an approximation
by factorized matrices W ·H, we have to take the norm of the residual difference
between them. Finally we normalize the error by norm of the original matrix, to
obtain a relative measure. Thus we can calculate the Frobenius norm difference
using the following formula:

||A − W · H||F /||A||F (1-5)
This represents how much of the variance of matrix A was captured by

the factorization or is encoded in matrices W and H. The better approximation
W · H produces, the closer this error comes to zero.

Some related works use a boolean matrix multiplication that aggregates
components with an OR function instead of the sum. Later in the method
chapter 3, we present a formal comparison of both metrics. In practice,
the boolean matrix factorization is only possible with boolean matrices; our
approach post-processes a quasi-binary matrix, so it would be impossible to
calculate the error recovery using this metric. Also, we prove in chapter 3 that
using the regular matrix multiplication penalizes the effect of overcovering a
position with more than one component.

Finally, there is bilinearity of the error in equation 1-5. Additionally, we
consider desired matrices W and H to have binary entries, so the optimiza-
tion landscape of this problem turns into an unconstrained binary quadratic
problem (UBQP) which is very hard and doesn’t scale well. This optimiza-
tion landscape is hard to navigate, full of local optima, and many approaches
(including ours) are not deterministic to approximate.

Therefore, we compare our results to the Frobenius reconstruction er-
ror calculated using the PCA reconstruction. The PCA navigates in a less
constrained space that contains the space of binary matrices, so it is guaran-
teed to produce a better error norm than the BMF. More than that, it is the
best reconstruction of a given rank G, a unique and deterministic best. If the
PCA processes matrix A into a rank-G factorization, yielding matrices Ug, Σg,
and V T

g , their Frobenius norm reconstruction error can be calculated as the
following equation.

||A − Ug · Σg · V T
g ||F /||A||F (1-6)

So it works as a deterministic and unique lower-bound on every instance.
This measure allows us to understand if the instance was even decomposable
into G components in the first place.

Chapter 1. Introduction 24

If we used the boolean matrix multiplication in 1-5, it would not be
comparable to this lower bound given by the PCA.

1.3
Work organization

In chapter 1, we present an overview of the area of binary matrix
factorization, our objectives, contributions, and how we organized this work.

Then, in Chapter 2, we present the main reference for the work. We
divided our reference search into a discussion about the main algorithmic
approaches for Binary Factorization and their common applications.

In Chapter 3, we present the full pipeline for our approach. We propose
a discretization step at the end of a factorization pipeline. Thus we present the
problem formulation and the column subproblem, an example as a motivation
to the theoretical work, the main algorithm for solving the column subproblem,
and then we discuss how to use the algorithm for the column subproblem back
into the factorization pipeline. Also, we briefly compare the Frobenius norm
reconstruction error using the regular matrix multiplication and the boolean
matrix multiplication present in related works.

Our work presents many different applications and is measured with
different error scores. It was worth it to distribute it into three chapters. In
Chapter 4, we present three tiny cases that allow us to observe nuances in
algorithmic behavior regardless of the quality metric choice. Thus, we compare
two algorithms and our pipeline’s solution to each of these cases.

In Chapter 5.1.1, we introduce the reader to our main application case:
the unsupervised visualization of petrochemical batch processes. Actually, this
application was the first motivation for the present work. We show how we have
applied the binary matrix factorization along with the principal component
analysis to obtain a representation of the operation of valves of a batch process
in a petrochemical industry. Also, we present all the visualization of the 11
selected time periods of two refineries in Appendix A.

In Chapter 6, we present four other applications of the algorithm. First,
we compare our pipeline to different algorithms using the datasets found in
(DESOUKI; RöDER; NGOMO, 2019). Then we apply our pipeline to Gene
Expression datasets. This application was first tried by the same author whose
algorithm inspired this post-processing pipeline in (ZHANG et al., 2010). The
difference in our work is that we apply our pipeline to larger instances and
a larger number of them. These instances are available in the portal Gene
Expression Omnibus, a database from the U.S.’s National Library of Medicine
(EDGAR; DOMRACHEV; LASH, 2002).

Chapter 1. Introduction 25

Additionally, we apply our pipeline to more general applications of
topic modeling and recommendation systems. These applications usually have
difficult instances and enrich our discussion of results. We present the detailed
results table from the gene expression datasets and the topic modeling in
appendix B

Finally, in Chapter 7, we make a final discussion over the main strengths
and shortcomings of our approach compared to others and our view of the
kinds of applications we believe our approach should work best. In addition,
we also present ideas that we want to delve into in future works.

2
Related Work

There are diverse threads of work on the factorization of binary matrices.
The algorithmic approaches are various, ranging from continuous methods such
as alternating least-squares to discrete greedy heuristics. Our first impression
is that there was a divide in references around two keywords: boolean and
binary.

We searched for the search keys ’Binary Matrix Factorization’ and
’Boolean Matrix Factorization’ using a search tool called Findpapers (GROS-
MAN, 2020). This search was last updated on April 26th, 2022. This tool
performs a search in the bases: ACM, arXiv, bioRxiv, IEEE, PubMed, and
Scopus.

We then performed an abstract screening, excluding papers that did not
explicitly comment on relevant contributions to the theory, implementation,
or application of BMF or its variants. During the full paper review, we also
performed paper exclusion and also a brief inclusion of papers through snow-
balling. We made this brief inclusion because we verified common references
in texts that were not included. Some related works did relevant contributions
without modelling the problem as matrix factorization.

Then, we organized and reviewed the remaining references by algorithmic
approaches and applications.

2.1
Algorithmic approaches

There are two central communities for decomposing the binary matrices.
The first is centered around the seminal work of Zhang (ZHANG et al., 2007).
Our proposed pipeline uses the algorithm proposed by the authors as a first
step. This algorithm is based on alternating least squares minimization through
gradient descent and some clever scaling. The other central community revolves
around the discrete heuristics proposed by Miettinen in (MIETTINEN et al.,
2008).

The first approach by Zhang (ZHANG et al., 2007) creates a clever
algorithm that relaxes the problem such that the entries can assume any values
between 0 and 1. The algorithm works by alternating gradient descent and
scaling strategies for keeping entries of matrices W and H near the interval
of 0 and 1 during the optimization. Thus it approximates the problem by
navigating a continuous space between 0 and 1.

Chapter 2. Related Work 27

A problem with this approach arises when discretizing the variables by
a threshold. The reconstruction error falls to a level that deems the matrices
useless in practice. Later Zhang et al. explored applications for gene expression
data in (ZHANG et al., 2010), which they apply to binary matrices obtained
from microarray data from genetic studies. Later works, the group extend
their method for symmetric binary matrices and the detecting communities
and bicliques in (ZHANG; WANG; AHN, 2013) and (ZHANG; AHN, 2015).
There is a practical implementation of this algorithm in the Python package
called Nimfa, proposed in (ZITNIK; ZUPAN, 2012).

Also, there are constant-factor approximation algorithms with guarantees
to the problem, presented by (KUMAR et al., 2019). In this paper, authors
present algorithms with less error rate than Zhang’s.

In (MEEDS et al., 2006) as well as in (GOLDEN; O’MALLEY, 2021),
authors compare learning the dictionary matrix through many different ap-
proaches, such as sampling and clustering. The mixture matrix is non-negative,
and only the dictionary matrix is binary. In contrast, in (LI et al., 2019), au-
thors propose the use of BMF to detect changes in signals, and the mixture
matrix W has binary entries, and features in the dictionary matrix H are
non-negative continuous, representing the basis of signals.

Another community calls this problem Boolean Matrix Factorization and
solves it through constructive heuristics. A pioneer work of (MIETTINEN et
al., 2008) describes the ASSO algorithm. This algorithm uses the pairwise
distance between rows to decide which position should be rounded to one,
managing to maximize the coverage of the target matrix and minimize over-
lapping positions. It generates many potential candidates for the basis matrix
H, then later tests their inclusion by calculating the gain of coverage they
bring. The authors briefly present alternatives for ASSO’s implementation in
the same paper, including clustering and exhaustive search.

Later works in the same community of approaches include algorithm Gre-
ConD presented in (BELOHLAVEK; VYCHODIL, 2010), (BELOHLAVEK;
TRNECKA, 2013), (BELOHLAVEK; OUTRATA; TRNECKA, 2014), (BE-
LOHLAVEK; TRNECKA, 2017), algorithm Panda by (LUCCHESE; OR-
LANDO; PEREGO, 2013), and topFiberM in (DESOUKI; RöDER; NGOMO,
2019). All of them are based on finding good factors for the dictionary ma-
trix H. As stated in (MIETTINEN; NEUMANN, 2021), GreConD and Panda
differ in how they select factors in the first round. GreConD is based on a
set cover heuristic and algorithm that tends to find non-overcovering factors.
Meanwhile, Panda finds denser factors. TopFiber is a more recent algorithm
that claims to be comparable in quality to GreConD and much faster (DES-

Chapter 2. Related Work 28

OUKI; RöDER; NGOMO, 2019). In (WAN et al., 2019), the heuristic uses
row ordering and other sparse matrix methods to find dense components in
the data progressively.

It is important to note that these algorithms in their respective papers
are measured in their majority by a covering metric that has some problems
that arise by measuring the reconstruction error using a special boolean matrix
multiplication. We will discuss this in chapter 3.

In this heuristics community, the work has been extensive. One charac-
teristic discussed in (BELOHLAVEK; OUTRATA; TRNECKA, 2018) is the
quality metric for the algorithm. Authors propose a new metric to compare
heuristic approaches using a linear combination of minimizing the Frobenius
norm error given a rank k (DBP view) and minimizing k given a minimum
desired error ϵ (AFP view). However, the reconstruction of the matrices uses
the boolean matrix multiplication. As we discuss in chapter 3, this recon-
struction does not take into consideration the problem of over-covering. This
compensates for the greedy behavior of algorithms such as Asso, GreConD,
and TopFiber.

Mirisaee et al. in (MIRISAEE; GAUSSIER; TERMIER, 2016) propose
a neighborhood for searching improvements in each row. Additionally, the
authors present different versions of the search by linearizing the objective
function, which is an idea explored by us.

This local search deals with trading ones in different vectors that generate
components. Another interesting way of thinking about local search is altering
the given rank-k. In (ENE et al., 2008), they propose a local search that merges
components. We didn’t find any reference that has a local search for splitting
components.

In recent work in (GOLDEN; O’MALLEY, 2021) and in (MALIK et al.,
2021), authors propose a quantum simulated-annealing algorithm, and then
they use the D-Wave quantum computer to solve this problem. In (LU et al.,
2011), authors propose a Tabu search for the rank-one version of the problem.
And in (SNÃ¡Å¡EL et al., 2007) and (SAENKO; KOTENKO, 2014), there are
versions of a genetic algorithm, each with an interesting crossover operator.

Another idea is to solve exactly small cases using Integer Programming,
such as in (KOVACS; GUNLUK; HAUSER, 2018). In the first paper, au-
thors propose a formulation and linearize the bilinearities using McCormick
envelopes (MCCORMICK, 1976). Then in (KOVACS; GUNLUK; HAUSER,
2021), the same authors suggest a column generation approach, although they
test with ranks up to 6. The use of boolean multiplication linearization intro-
duces many additional variables to the problem. In our proposed formulation,

Chapter 2. Related Work 29

we consider a resolution heuristic of using a fixed approximation for W and
solving for H and later the opposite.

This approach seems to be similar to the one taken by (SHEN; JI; YE,
2009). In this paper, the authors propose an exact formulation, a relaxation,
and an approximation algorithm over the fractional result to solve the rank-
one version of the problem. Other works explore this thread to solve many
variants, such as weighted rank-one binary factorization in (LU et al., 2011).

Our idea of linearized alternating minimization is also explored by
(HESS; MORIK; PIATKOWSKI, 2017). In this work, they propose a splitting
operator procedure inspired by (PARIKH; BOYD et al., 2014).

2.2
Applications

We list a few applications commonly found in the literature for BMF
algorithms. Notice that some applications carry some characteristics that call
for a different formulation. For instance, recommendation and collaborative
filtering are about predicting missing values. Therefore, methods have to deal
with noise. Another example is general undirected networks, which have a
symmetric binary adjacency matrix for factorization that imply that a single
factorized matrix that represents data when squared.

2.2.1
Genetics

Some authors have proposed the application of Binary matrix factoriza-
tion for microarray gene expression technology. Gene expression microarray
data captures the activity of genes at the mRNA level in specific conditions.
THis technology is used to understand which genes are active and their ex-
pression intensity. Analysis of this data aids in comparing gene expression
profiles across conditions, identifying biomarkers indicative of certain diseases,
and understanding gene functions. Standard techniques for analysis include
clustering, principal component analysis, and matrix factorization.

In (ZHANG et al., 2010), authors propose using BMF to find patterns in
gene expression data. In (CORRADO et al., 2014), authors also apply similar
techniques of decomposing but using greedy heuristics instead and larger
instances for analyzing gene expression datasets. Their datasets have tens of
thousands of rows and hundreds of columns, and they group up to rank 25.
We found in (EDGAR; DOMRACHEV; LASH, 2002) (CLOUGH; BARRETT,
2016) many instances similar in size to test our approach in chapter 6.

Chapter 2. Related Work 30

In (TU; CHEN; XU, 2011), authors proposed a BMF algorithm to detect
protein complexes by clustering proteins with similar interactions through the
factorization of the binary adjacency matrix of a PPI network.

Close to these kinds of instances, we also found in (BARIK; VIKALO,
2018) an application for individual haplotyping. Individual haplotyping per-
tains to determining sets of closely linked genetic markers on a chromosome,
reflecting an individual’s genetic variations. Its applications include identifying
genome regions linked to diseases, studying genetic diversity within popula-
tions, and understanding drug responses based on genetics.

2.2.2
Role discovery

The seminal paper (ENE et al., 2008) presents the problem of minimizing
roles in the relationship of users and access granted. A bicluster in this
application maps perfectly into a system role in which a group of persons
has access to the same group of functionality. There they present a heuristic
to expand from a seed node into a dense bicluster, then a kind of local search
to merge the discovered biclusters in this manner. Although this paper doesn’t
mention binary matrix factorization, it is referenced mainly by the community.
A later paper (FRANK et al., 2012) does apply Boolean Matrix Factorization,
but with permission request patterns from Facebook third-party applications.
In (WANG et al., 2022), authors also propose a scheme for standardizing access
to data from specific attributes.

Later, Saenko and Kotenko study the use of genetic algorithms applied
to many virtual machine network problems for a BMF specialized in the sym-
metric case (SAENKO; KOTENKO, 2014), (SAENKO; KOTENKO, 2015),
(SAENKO; KOTENKO, 2016) and later (PARFENOV et al., 2021). The use
is interesting for finding subnetworks of dense nodes. In the same use case,
Zhang has a different approach in which he proposes a projected gradient
method with normalization also for the symmetric case in(ZHANG; WANG;
AHN, 2013) and (ZHANG; AHN, 2015).

2.2.3
Matrix Completion, Collaborative Filtering, and Recommendation

Another application of BMF is collaborative filtering. Since the Netflix
Prize (BENNETT; LANNING et al., 2007), the non-negative factorization
topic has exploded with new works. A matrix of relationships between items
and users can be decomposed into a small latent space of users and items that
allows predicting a missing value, such as a movie that a user might like. For

Chapter 2. Related Work 31

binary data such as "likes" or direct consumption or view of an item, we can
model these matrices as boolean and apply BMF methods.

This setting has some common problems intrinsically. It is common for
rows ans columns have a wide range of sparsity due to natural accumulation of
consumption on some users, some items. Also, there is the challenge of working
with missing data. Since viewers have not had the chance to consume all items,
some are missing; the vectors of which item each user has consumed are very
sparse and non-representative of a user’s preferences, of what he could have
consumed if he had been given a chance. So methods must be robust to noise
and an immense scale for problems with many users and items.

In (RAVANBAKHSH; POCZOS; GREINER, 2015) and (RUKAT et al.,
2017), and (CHEMMALAR; LAKSHMI, 2021), they discuss how to overcome
the scale and the noise using different approaches for the Movie Lens dataset
(HARPER; KONSTAN, 2015). As (RAVANBAKHSH; POCZOS; GREINER,
2015) uses a message passing scheme, while (RUKAT et al., 2017) uses a
columns and row sampling scheme, and finally (CHEMMALAR; LAKSHMI,
2021) uses a Formal Concept discovery algorithm.

2.2.4
Outlier detection in energy signals

In (LANGE; BERGéS, 2016) and (LI et al., 2022), authors propose a
different modeling of the problem in which a matrix of the decomposition is
continuous and made of common patterns from various electric appliances,
and the other is a binary matrix. So a factorization of this kind could detect if
someone is plugging a unkown device or if an attack on the network produces
outlier behavior.

2.3
The gap in the literature

We chose to position this thesis as conector between learning strategies
which produce real-valued near-binary matrices, and heuristics that explore
explicitly the discrete space

3
Method and proposed algorithms

Our approach combines ideas from the heuristic exact methods to post-
process the results given by the gradient descent approach. We use a linearized
objective function as a surrogate for the reconstruction objective error, usually
calculated with the Frobenius norm. The linearized objective function allows
for rewriting the problem into set notation and operations, which will be the
foundation for the algorithm presented later in this section.

Before introducing the main algorithm, we first discuss some intricacies
of the objective function, and a solution strategy breaks down the problem
into column sub-problems. Then we show how to change the representation of
the problem to operations using sets and how this relates to calculating the
difference. Later we show two corollaries that drastically reduce the solution
space to support a recursive search algorithm reduction.

Finally, we present the complete three-step BackDisc pipeline, in which
the third step utilizes our BackColumn procedure to discretize an approxima-
tion of the factorization, recovering the loss of the discretization by threshold-
ing.

3.1
Formulation

In our setting, the matrix A ∈ {0, 1}|M|,|N | is given as input. The
alternating gradient descent outputs two matrices W̃ ∈ [0, 1]|M|,|G| and H̃ ∈
[0, 1]|G|,|N |, such that the multiplication W̃ · H̃ is a stable (local optimum)
approximation for A. Notice that the entries of W̃ and H̃ are real values
between 0 and 1. For many applications, we want to discretize these entries
without losing too much of the reconstruction error, which measures the
distance of approximation between A and the reconstruction W · H.

One way to measure this approximation error is to measure how much of
the variance was captured. Thus, we measure how close to zero the difference
is A − W · H. We can calculate this by measuring the norm of this difference
relative to the norm of the original matrix A, as shown in equation 3-1.

minimize ∥A − W · H∥2 =
∑

m∈M

∑
n∈N

(amn − (
∑
g∈G

wmg · hgn))2 (3-1)

Using this equation as an optimization problem, we observe some charac-
teristics that suggest hardness even for approximations: binary decision vari-

Chapter 3. Method and proposed algorithms 33

ables, bilinearity, and quadratic objective. Therefore, we decided to try ap-
proximating the problem using a linearized surrogate objective function using
the ℓ1-norm, as shown in equation 3-2.

minimize ∥A − W · H∥1 =
∑

m∈M

∑
n∈N

|amn − (
∑
g∈G

wmg · hgn)| (3-2)

These linearizations allow us to rewrite the problem to solve the problem
as the following mixed-integer program MIP shown below in 3-3. We introduce
variable matrix B to eliminate the modulus function.

minimize 1T · B · 1 (3-3a)

subject to

A − (W · H) ⪯ B (3-3b)

(W · H) − A ⪯ B (3-3c)

B ∈ R|M|,|N |
+ (3-3d)

W ∈ {0, 1}|M|,|G| (3-3e)

H ∈ {0, 1}|G|,|N | (3-3f)

With a linear objective function, we can use an extensive range of
methods and commercial solvers to deal with the problem. Lastly, we still
have to deal with the bilinearity aspect of the problem.

Inspired by other algorithms that use alternating minimization, our
first investigation was to solve problems with this formulation above in
an exact solver, Gurobi, as a last step after running the gradient descent.
These preliminary results showed that frequently the discretization using the
formulation was significantly better than any thresholding procedure.

We tried scaling the instances, but rapidly, Gurobi (Gurobi Optimization,
LLC, 2023) was not able to cope with an increasing amount of binary
variables. Thus, we developed an algorithm for large instances by changing
the representation to a set, taking advantage of the natural sparsity of the
problem.

Many matrix decomposition algorithms rely on alternating optimization.
This means fixating an approximation of one of the matrices, optimizing one
side, then fixating the optimized side and solving the previously fixated matrix,
and repeating until achieving solution stability. We intended to apply an exact

Chapter 3. Method and proposed algorithms 34

binary optimization as the last step of the alternating minimization.
Therefore, the algorithm presented can be used as a post-processing step

for many approaches. In the present work, we tested it as a post-processing
step for the gradient descent binary decomposition presented by Zhang et al.
in (ZHANG et al., 2007) and implementation released in the package Nimfa
(ZITNIK; ZUPAN, 2012).

Our approach relies on obtaining a first approximation to one of the ma-
trices, preferably W first, and solving a subproblem problem of approximating
each column of the given matrix A as a sum of columns of W , obtaining matrix
H. Then, fixing the value of matrix H and solving the transposed view of the
first step, approximating each row of A as a sum of a subset of rows of H,
obtaining a new value for W .

3.2
The column sub-problem

Assuming a first approximation for W as fixed, a simple rearrangement of
equation 3-2 shows that we can treat the summation over rows in M separately
for each column in set N .

minimize
∑

m∈M

∑
n∈N

|amn−(
∑
g∈G

wmg·hgn)| =
∑

n∈N

minimize
∑

m∈M
|amn − (

∑
g∈G

wmg · hgn)|


(3-4)
Another way of thinking about this subproblem is a problem of choosing

a subset of a binary basis to represent a given binary vector. We show this
interpretation in equation 3-5. In this equation, we have to approximate the
column an using the binary decision variables hgn to choose from a set of fixed
basis, the columns of W .

 an

 ≊

 w1

 h1n +

 w2

 h2n + · · ·+

 wg

 hgn + · · ·+

 wG

 hGn (3-5)

We can also run a similar procedure fixating H and optimizing matrix
W , one row of A at a time, by just transposing the multiplication.

A[m×n] ≊ W[m×g] · H[g×n] → AT
[n×m] ≊ HT

[n×g] · W T
[g×m] (3-6)

Therefore, the discrete basis in this transposed view becomes a selection
of rows of H to approximate each row t of matrix A.

Chapter 3. Method and proposed algorithms 35

 aT
m

 ≊

 hT
1

 wm1 +

 hT
2

 wm2 + · · · +

 hT
g

 wmg + · · · +

 hG

 wmG

(3-7)
Consequently, a single algorithm for this subproblem can be used to

optimally solve the linearized optimization formulation described in equation
3-4 looping through each row and then through each column.

3.3
Column Sub-Problem Example

Suppose we are trying to approximate column an by choosing a com-
bination of basis and minimizing the ℓ1-norm of the difference between the
original and the reconstruction. In the example 3-8, we have the first step of
this procedure. In this example, the choice of columns wg of approximation W

is decided by choosing values 0 or 1 for decision variables hgn.

minimize

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1
0
0
0
1
0
1
0
1
1



−





1
0
1
0
1
0
0
0
0
0



h1n +



0
0
0
0
1
0
1
1
1
1



h2n +



0
1
0
1
0
0
1
0
0
0



h3n +



0
0
0
0
0
0
1
1
1
0



h4n



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3-8)

We begin with the trivial case in which none of the basis is included in
the solution. The objective function is the norm of the binary vector, which is
simply the count of positions equal to one. Then we calculate the gain ∆g of
adding any column to the solution.

We calculate this gain by summing which positions in the resulting
subtraction will be zero, which are the positions where both the target vector
and the basis vector are one. These positions are marked with blue in equation
3-8. Then we subtract the superfluous positions where the basis vectors have
ones, and the target vector have not. Subtracting a column with an extra one
in the target vector will increase its modulus. Those positions are marked with
light red in equation 3-8.

Chapter 3. Method and proposed algorithms 36

OF = 5; hn = [0; 0; 0; 0]; (3-9a)

∆1n = 2 − 1 = 1; (3-9b)

∆2n = 4 − 1 = 3; (3-9c)

∆3n = 1 − 2 = −1; (3-9d)

∆4n = 2 − 1 = 1 (3-9e)

Then we calculate for each variable hgn in G a gain indicator ∆gn. This
gain is calculated by subtracting the number of positions in which the target
vector an has in common with the basis by the superfluous. For the next step,
we add h2n to the solution. In equation 3-10, we will recalculate the target
vector by subtracting the added basis and repeat the procedure.

minimize

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1
0
0
0
0
0
0
-1
0
0



−





1
0
1
0
1
0
0
0
0
0



h1n +



0
1
0
1
0
0
1
0
0
0



h3n +



0
0
0
0
0
0
1
1
1
0



h4n



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3-10)

In this step, we observe that the target vector now carries an entry equal
to minus one. Even if a new basis has a one in this position, the ℓ1 norm of
the target vector will increase because the modulus in this position will also
increase. Therefore, the only case in which there is an actual gain is to cover
the remaining positions in which the target vector is equal to one.

OF = 2; hn = [0; 1; 0; 0]; (3-11a)

∆1n = 1 − 2 = −1 (3-11b)

∆3n = 0 − 3 = −3 (3-11c)

∆4n = 0 − 3 = −3 (3-11d)

3.3
Also, notice that by adding a basis to the solution, the number of

Chapter 3. Method and proposed algorithms 37

remaining positions left with value one can only decrease monotonically. When
we add a column to a solution tentatively, the number of ones not covered
only reduces. Thus, the ∆gn of the remaining columns can only monotonically
decrease. This monotonicity has some interesting consequences.

Firstly, when we find a case in which all remaining ∆ is negative, it is a
local optimum because ∆’s which are negative will never become positive later
by progressively adding basis to the solution set.

Additionally, we didn’t even need to consider h3v with a respective
negative ∆3n from equations 3-9 for the second round. Since ∆3n in step one
depicted in equations 3-8 was negative, it can only decrease. Consequently, it
does not need to be considered in further steps.

Also, summing positive deltas is an upper bound for any possible com-
bination of adding g to the solution set. For instance, the sum of ∆2n and
∆4n in the first step is two, as shown in equations 3-9. Consequently, when a
recursive algorithm finds a local optimum with objective 2 to the first state
with objective 5, we know that the best we can achieve by exploring indices 2
and 4 is an objective of value 3. Thus we can stop searching and prove that
the solution found in step two, as shown by equations , is optimal.

3.4
The Set representation

For dealing with really large matrices, we can take advantage of the
structure of the problem transforming the many binary vectors into sets that
contain the positions in which these vectors are equal to one.

Let I a function that transforms vectors to a set of positions equal to
one. We can apply this function to any rows or columns of matrices A, W , or
H during the column subproblem solve.

Definition 3.1 (Function I that translates sparse vectors to sets)
Let x ∈ {0, 1}n. Then the function I(x) : {0, 1}n → 2n is the set of indices of
the positions of x which are greater or equal to 1.

Examples of usage of the function I. Let x = [0, 1, 1]. Then I(x) = {2, 3}.
Or let y = [1, 1, 0]. Then I(y) = {1, 2}.

An algorithm for the column subproblem using a fixed W has to decide
which positions of vector hn should be explored, fixating to 1. The algorithm
starts with the trivial solution such that all positions are assigned to zero. The
vector hn has size |G|. Therefore, using the set representation, we begin the
algorithm with:

I(hn) = ∅

Chapter 3. Method and proposed algorithms 38

since all positions initially are zero.
We add g ∈ G to I(hn) whenever we are investigating assigning position

g in vector hn to 1. As the algorithm takes steps t it inserts into the current
solution some basis g from G

I(hn) ⊂ G

Definition 3.2 (Set Q of remaining positions to cover in the target vector)
The algorithm keeps track of the set Q of uncovered positions of the target
vector an. The set Q is a subset of M.

Q = I(an) \

I(hn)⋃
g

I(wg)


If a new g is added to solution set I(hn) then we can update Q in the following
manner:

Q := Q \ I(wg)

Lemma 3.3 (Gain calculation using set representation) When solving
for an, the increment ∆gn of adding g to a solution I(hn) is calculated as:

∆gn = |I(wg) ∩ Q| − |I(wg) \ Q|

Proof.
The set Q ⊂ M of uncovered positions in an partitions the set I(wg)

into two. Firstly, the intersection between I(wg) and Q represent the uncovered
positions of an which could be covered by adding g to the solution I(hn). This
would contribute positively to minimizing the objective function.

The remaining elements of I(wg) which are not in Q would contribute
negatively because they are either superfluous (do not cover any positions in
an) or they were already covered by another group wg during the construction
of a solution.

We will give a direct proof. Suppose we add g′ to the solution set I(hn).
Let g′ as a fixed position in hn we wish to flip to one and let ∆g′n the difference
in objective when changing the value of hg′n from zero to one. The objective
function for solving just the column an is:

minimize
∑

m∈M
|amn − (

∑
g∈G

wmg · hgn)|

Chapter 3. Method and proposed algorithms 39

First, we remember that all elements amn, wmg, hgn are either {0, 1} by
definition of the problem. So, for each g the multiplication wmg · hgn ∈ {0, 1}
also. Additionally, 0 ≤ ∑

g∈G wmg · hgn ≤ |G|.

The summation ∑
g∈G wmg ·hgn also can be simplified to ∑

g∈I(hn) wmg ·hgn

for a given solution I(hn), because if g /∈ I(hn) then hgn = 0.

The term amn − (∑
g∈G wmg · hgn) can assume values from 1 to −|G|.

amn − (∑
g∈G wmg · hgn) 1, 0, −1, −2, . . . , −|G|

|amn − (∑
g∈G wmg · hgn)| 1, 0, 1, 2, . . . , |G|

So, when hg′n becomes one, for all t in which wmg′ is one will have the
summation (∑

g∈G wmg ·hgn) increase also one in value. Which means go right on
the above scale. So, the only possibility for minimizing the objective function
is to use the summation to cover a position where amn = 1. Then the module
will decrease from 1 to 0. Otherwise, the module will only increase.

For each position t ∈ I(wg′), the change in the value of the term
|amn − (∑

g∈G wmg · hgn)| will fall into 3 cases:
Case 1: am′n = 0

only the summation over G increases, so the objective function also increases.
Case 2: am′n = 1 and (∑

g∈I(hn) wmg ·hgn) > 0 in this case, the summation
has enough magnitude to cancel out amn = 1, so the increase in the summation
increases the objective function

Case 3: am′n = 1 and (∑
g∈I(hn) wmg · hgn) = 0. Only in this case, when

the summation is equal to 0 in that position that the absolute value decreases
because it will cover the position amn. Therefore, the only thing that we
must track is the uncovered positions amn. We will do it maintaining a set
Q ⊂ I(an) ⊂ M in which we deduce the positions t in which amn = 1 and the
summation over G is still equal to 0, this means, is not covered. ■

With this lemma, we can now prove the main foundation for this work.
The following theorem will allow for an efficient search in practice.

Theorem 3.4 (Contribution decreasing monotonicity) Whenever
adding g to solution I(hn), all the gains of adding any other element in
the solution in the next steps can only stay the same or decrease. This means
when recalculating all other ∆g′n of g′ not yet in the solution set I(hn), the
new value is lesser or equal than it was before.

Proof. By Lemma 1, we have that ∆gn = |I(wg) ∩ Q| − |I(wg) \ Q|.
When you add {g} to the solution set I(hn), we update the set Q by
subtracting the newly covered positions. So, for the remaining positions g′,
the ∆g′n is updating taking into consideration that Q := Q\I(wg). Therefore,

Chapter 3. Method and proposed algorithms 40

Q has fewer items than before, and |I(wg) ∩ Q| becomes less or equal than
before and |I(wg) − Q| becomes greater or equal than before. Consequently,
the value of ∆gn can only decrease or stay the same. ■

Theorem 3.4 has many interesting consequences. The monotonicity can
be used to define local optima and to eliminate positions to search during a
recursive enumeration. This enables the design of a backtracking algorithm
that finds the global optimum for the sub-problem and only explores a small
subset of the combinatorial decision space.

Corollary 3.5 (Negative contributing candidates skipping) If ∆g′n

associated with any remaining g′ /∈ I(hn) is negative, then g′ will never be
in any local optima solution with the g that belong to the current solution set
I(hn).

Proof. Since the ∆g′′n of every position g′′ only decreases when adding any
other g′ to the solutions set I(hn), then adding g′ with negative ∆g′n would
not only leave the objective function worse, but it would also worsen all the
other ∆g′′n, the potential of constructing better solutions.

So, there always exists a solution better than one constructed by adding
g′, a solution that simply skipped adding g′ will stay ahead. Therefore, a
solution containing g′ could not be a local optimum, nor a global optimum
consequently. ■

Corollary 3.6 (Early stopping upper-bound) The solution set I(hn) is
a subset of G. Any subset P of G disjoint from I(hn) can have its overall
upper-bound calculated as.

∆UB =
∑
g∈P

max(∆gn, 0)

This means if any subset of P is added to the solution set I(hn), the overall
contribution to the objective function is bounded by ∆UB.

Proof. The max function is just a mechanism to select the positive ∆gn. So
suppose that any g ∈ P is added to solution set I(hn) then by theorem 1, all
the remaining ∆gn are updated to be of a lesser or equal value. Then, the sum
of all the positive ∆gv for all g before adding is greater than the actual ∆gn at
the point of adding them to the solution and updating the objective function.

Thus, ∆UB is greater than the overall gain of adding any subset of P in
any order. Consequently, if P is the set of remaining candidate g to explore,
and we know that exists a solution OF ∗ lesser than the current one OF −∆UB,
we don’t need to explore P . Because any solution would be worse than the one
with value OF ∗. ■

Chapter 3. Method and proposed algorithms 41

If we assume a sequential inclusion of candidate bases to the solution at
any given point during the search, we can sum positive deltas remaining to
explore and calculate an upper bound of the contribution of any combination
of insertions of the associated bases. This means that if we already know any
solution, this fact can be used to prove that we don’t need to further explore
a significant part of the decision space.

3.5
Set Notation Nomenclature

The set notation introduces sparsely many new symbols to the discussion.
In this section, we review them briefly before revisiting the example using
the new notation and introducing the more general algorithm for solving the
column subproblem.

M, N , G are the sets of all rows, columns, and principal com-
ponents (groups), respectively.

A[|M|×|N |] is the given matrix we are going to factorize it has
|M| rows and |N | columns.

am or an are a short notation for row m ∈ M of matrix A or
column n ∈ N of matrix A .

W[|M|×|G|] is the binary mixture matrix with |M| rows and |G|
columns.

wg is a short notation for column g of matrix W

H[|G|×|N |] is the binary dictionary or factor matrix W with |M|
rows and |G| columns.

W̃ , H̃ we utilize the ·̃ notation to denote matrices with near-
binary real-valued entries

W, H we utilize the · notation to denote a greedily dis-
cretized (usually low-quality) approximation for bi-
nary matrices

Chapter 3. Method and proposed algorithms 42

I(·) is the function that transforms a binary vector into
the set of the positions in it which are equal to one.

I(an) is the set of positions of column n of matrix A that
are equal to one.

I(hn) is the solution set containing the attempted positions
in column n which we will assign to one, once we
reach a final solution for column hn

I(wg) is the set of positions of column g of matrix W which
are equal to one, in the context of the algorithm, is the
basis we will decide if is worth for covering uncovered
positions in column an.

Q is the set of uncovered positions of the target row (or
column); it begins as I(an) and progressively, as the
algorithm adds base g, it deduces I(wg) from it.

OF is the current objective function obtained using the
norm 1 as a surrogate.

PQ is a generic priority queue which removes groups g

with the greatest ∆gn

∆gn is the contribution in the objective function of adding
g to solution set I(hn) or flipping hgn from zero to
one.

∆UB is an upper bound obtained from summing the re-
maining ∆gn in queue PQ

I(hn)rec, OFrec are the best solution and objective value found re-
turning from a child recursion

I(hn)∗, OF∗ are trackers of the best solution and objective values
found in the loop of recursions

3.6
The example revisited

With the theoretical basis, we can revisit the first example using the
set representation. Given the matrix A, we obtain, using any means, an
approximation for W , which we treat as fixed for the column subproblem.
For a target column an, we search for the best combinations of the bases w1

through w4 that, when summed, are the best approximation for it. We apply
the function I to each of the columns of W and target vector an, which is a
column of A.

Chapter 3. Method and proposed algorithms 43

I(an) = {1, 5, 7, 9, 10} (3-12a)

I(w1) = {1, 3, 5} (3-12b)

I(w2) = {5, 7, 8, 9, 10} (3-12c)

I(w3) = {2, 4, 7} (3-12d)

I(w4) = {7, 8, 9} (3-12e)

(3-12f)

Then we calculate the gain of adding each of the bases to the solution
using Lemma 3.3.

I(hn) := ∅ (3-13a)

Q := I(an) = {1, 5, 7, 9, 10} (3-13b)

OF := ∥I(an)∥ = 5 (3-13c)

∆1n = ∥I(w1) ∩ Q∥ − ∥I(w1) − Q∥ = ∥{1, 5}∥ − ∥{3}∥ = 1 (3-13d)

∆2n = ∥I(w2) ∩ Q∥ − ∥I(w2) − Q∥ = ∥{5, 7, 9, 10}∥ − ∥{8}∥ = 3 (3-13e)

∆3n = ∥I(w3) ∩ Q∥ − ∥I(w3) − Q∥ = ∥{7}∥ − ∥{2, 4}∥ = −1 (3-13f)

∆4n = ∥I(w2) ∩ Q∥ − ∥I(w2) − Q∥ = ∥{7, 9}∥ − ∥{8}∥ = 1 (3-13g)

(3-13h)

Observe in equations 3-13 that we already have position 3 with a negative
delta. Since the contributions are monotonically decreasing, we do not need to
consider it again in further steps.

Chapter 3. Method and proposed algorithms 44

Second call (3-14a)

I(hn) := I(hn) ∪ {2} = {2} (3-14b)

Q := Q − I(w2) = {1} (3-14c)

OF := OF − ∆2n = 5 − 3 = 2 (3-14d)

∆1n := ∥I(w1) ∩ Q∥ − ∥I(w1) − Q∥ = ∥{1}∥ − ∥{3, 5}∥ = −1
(3-14e)

∆4n := ∥I(w2) ∩ Q∥ − ∥I(w2) − Q∥ = ∥∅∥ − ∥{7, 8, 9}∥ = −3
(3-14f)

(3-14g)

In equations 3-14, we added base 1 to the solution and eliminated base
3 because it had a negative contribution. The remaining bases, 1 and 4, now
have negative contributions. Therefore, there is no way of further adding any
basis to the solution without worsening the objective function. In a recursive
scheme, the procedure should go back to the state described by equations 3-13.
Now the differences are that we already explored adding 2 to the solution set
I(hn) and that there is a local optimum with an objective function equal to 2.

The natural approach is to choose between bases 1 and 4 to begin a new
search. However, both their respective ∆’s, when summed up, are equal to 2,
which we know is an upper bound for the contribution of adding them in any
combination in any order. Since the current objective functions are back to 5,
and the contribution upper-bound is 2, the best we can expect by adding these
bases is 3, which is more than the solution we already found with just the basis
2. Therefore, we also do not need to search using bases 1 and 4. Finally, since
there are no options to explore, we can conclude that the local optimum we
found was actually the global optimum.

3.7
The BackColumn algorithm for the column sub-problem

We have introduced sufficient elements to design a recursive procedure
that efficiently explores the decision space of the column subproblem. The main
ideas are to calculate the individual contributions of all bases, consider only
the ones with positive contributions, and begin adding the ones with the most
significant contribution. Later in this chapter we present how to iterate and
apply this algortihm over all columns and rows to obtain the binary matrix
factorization discretization.

Chapter 3. Method and proposed algorithms 45

In a recursive scheme, our idea is to design a procedure that only controls
one inclusion step. In further recursive calls, the ∆’s tend to rapidly diminish
to negative values, and we can loop through the decision space efficiently. We
provide a pseudo-code for this procedure in algorithm 1.

Algorithm 1: Our proposed BackColumn algorithm for the column
sub-problem

function BackColumn(W , G, Q, I(hn), OF):
Let PQ := empty priority queue
Let I(hn)∗ := I(hn)
Let OF ∗ := OF
for g in (G − I(hn)):

∆gn = |I(wg) ∩ Q| − |I(wg) − Q| // From Theorem 1
if ∆gn > 0: // From Corollary 1

add g with priority ∆gn to PQ
while PQ is not empty queue:

Let g, ∆gn := remove first priority item from PQ
I(hn)rec, OFrec := BackColumn(W ,

G := {g|g ∈ PQ},
Q := Q − I(wg),
I(hn) := I(hn) ∪ {g},
OF := OF − ∆gn)

if OFrec < OF ∗:
OF ∗ := OFrec; I(hn)∗ := I(hn)rec

∆UB :=
∑

g∈P Q ∆gn

if OF − OF ∗ > ∆UB break // From Corollary 2
return I(hn)∗, OF ∗

BackColumn(W , G:=G, Q := I(an), I(hn) := ∅, OF := |I(an)|)

The algorithm’s inputs are the fixed matrix W and four other data
structures that describe the state of an exhaustive search. The state of the
search can be controlled using three sets and one integer. Internally the
algorithm keeps a priority queue PQ of candidate positions to include in
the solution set. In a loop, the algorithm makes a recursive call to itself,
updating the data structures which represent the subproblem of searching once
a candidate basis g is added to solution set I(hn).

The set G represents remaining positions to explore. At the root of the
recursive calls, we assign G to the set of all possible indexes we can add to
the solution set I(hn). At the beginning of the step, we filter indexes g ∈ G
with positive contributions ∆gn > 0 to a priority-queue PQ. The algorithm
loops through all positions greedily, choosing the most significant contribution
in the priority queue and then calling recursively the same procedure. The
recursive call narrows the space of remaining candidates to those remaining in
the priority queue, that is, those with positive contributions that are not yet

Chapter 3. Method and proposed algorithms 46

explored in the loop. Thus we assign to G in the recursive call just the elements
in PQ.

The set Q represents the uncovered positions of the original target vector
an. The set Q is initialized as the original positions in an, which are equal
to one. This set allows calculating the contributions ∆gn efficiently. In the
recursive call, when we add g to the solution set I(hn), we must update what
are the positions left to cover by subtracting the set ⊒} of positions covered
this basis.

Also, we have the current objective function represented as a floating-
point variable OF . In the recursive call, we simply update the OF by
subtracting the contribution ∆gn associated with the candidate g added to
the solution set.

Finally, the algorithm will keep track of the best solution found in each
recursion made in each loop. If the solution I(hn)rec found in the recursion is
better than the best solution I(hn)∗ found previously, the algorithm will store
its value.

3.8
The intuition behind the cut-off gains

The column solve algorithm works as an unconventional recursive branch-
and-bound procedure. At the top level, there is a while loop that controls
the addition of candidate columns g to the solution set I(hn). Each time the
algorithm adds one candidate to the solution set, it calls itself recursively,
updating the state of the problem in terms of the positions that are still
uncovered Q and the remaining valid column candidates G.

We propose a visualization of this recursive call in figure 3.1. The rectan-
gles with rounded corners represent each call to the BackColumn procedure.
In their top-right corner, we represent the current state’s solution set I(hn).
For each candidate column in the priority queue, there will be a recursive call
that adds it to the solution and updates the state of the problem. The re-
maining candidates not added to the solution are passed as arguments in the
recursive call. Recursive calls are represented as blue arrows, and the while
loop iterations through priority queue PQ are represented as green arrows.

In this example, we first follow the blue arrow, a recursive call that
adds column 1 to the solution set I(hn). The remaining candidates {2, 3}
are passed as arguments for the child procedure as remaining candidates to be
analyzed. Then this procedure calls itself recursively adding 2 to the solution
set, then another call adds 3 to the solution. The new call has an empty priority
queue; then it defaults to returning the solution. Consequently, the recursive

Chapter 3. Method and proposed algorithms 47

 COLUMN_SOLVE WHILE LOOP THROUGH PQ {}

1 2 3

{1}
2 3

{1,2,3}

{1,2}
3

{1,3} {2,3}

{2}
3

{3}add 1

add 2

add 3

add 3

add 3

add 3

add 2

Figure 3.1: Example recursion tree of the main BackColumn procedure.

call compares the solution {1, 2, 3} to the solution {1, 2} keep the best and
returns. Then, we explore the first green arrow, adding the candidate 3 to the
solution set, obtaining {1, 3}. Thus, when the green arrow is used in practice,
it explores a solution space without the candidates it leaves behind.

 COLUMN_SOLVE WHILE LOOP THROUGH PQ {}

1 2 3

{1}
2 3

{1,2} {2,3}

{2}
3

{3}add 1

add 2 add 3

add 3add 2

Figure 3.2: Example recursion tree revisited using the corollary 3.5.

In the hypothetical situation presented in figure 3.2, ∆3 got negative
after adding the solution candidate column 1 to solution set I(hn), so we can

Chapter 3. Method and proposed algorithms 48

eliminate candidate 3 and it is not passed in the next recursive call. Therefore,
we avoid the unnecessary exploration of solutions {1, 2, 3} and {1, 3}. Notice
that this corollary also allows us to check for local optima on the leaves.
Because whenever there is still a positive delta to be explored in the priority
queue, there is probably a better solution to be found by recursing.

 COLUMN_SOLVE WHILE LOOP THROUGH PQ {}

1 2 3

{1}
2 3

{1,2,3}

{1,2}
3

{1,3}

add 1

add 2

add 3

add 3

Figure 3.3: Example recursion tree revisited using the corollary 3.6.

In the hypothetical situation presented in figure 3.3, after recursing
through the inclusion of 1 at the top of the recursive call pile, ∆2 + ∆3 were
found to be less or equal to gain already obtained from a known solution. Thus
the whole while loop can be halted. In this situation, by stopping early, we can
avoid the exploration of all combinations of inclusions of remaining candidates.

3.9
Proposed pipeline and the BackDisc Algorithm

Our final approach for factoring binary matrices is to generate a near
binary factoring using a three-step pipeline, as shown in 5.1. First, the gradient
descent algorithm described in (ZHANG et al., 2007) and implemented by
(ZITNIK; ZUPAN, 2012) producing W̃ and H̃. Then, using a simple search
for thresholds to discretize W then calling the BackColumn procedure for every
column of A, then for every row. We describe both the simple threshold search
procedure and the discretization procedure in this section.

Chapter 3. Method and proposed algorithms 49

Zhang’s
gradient
descent

Threshold
Search

Discre-
tization

(BackDisc)

Figure 3.4: The BackDisc pipeline

3.9.1
Thresholding

The thresholding procedure 2 searches exhaustively for the pair of real-
valued thresholds tw, th ∈ {0, 1} that minimize the Frobenius Relative Error.

Algorithm 2: The Thresholding search algorithm, the second step of
the BackDisc pipeline.
function threshold_search(A, W̃ , H̃):

normbest := ∞
for tw in [.05, .10, .15, ..., .85, .90, .95]:

W := threshold(W̃ , tw)
for th in [.05, .10, .15, ..., .85, .90, .95]:

H := threshold(H̃, th)
norm :=

∥∥∥A − W · H
∥∥∥

2
/ ∥A∥2

if norm < normbest :
normbest := norm
W best = W
Hbest = H

return W best, Hbest

For matrices W̃ , H̃, we try every combination for these thresholds that
are multiples of 5% and fixate to one entry above the threshold and fixate
to zero otherwise. This procedure generates two greedily discretized matrices
W, H. We test the reconstruction error for this pair of matrices and store the
matrices that minimize the error.

One of the motivations for this work is that even though we search for
these matrices, the Frobenius error is still inferior to that obtained by Zhang’s
algorithm. In practice, the discretization procedure we propose in the following
chapter serves to recover the loss by thresholding.

3.9.2
BackDisc Algorithm

As we showed in equations 3-5 and 3-7, the linearized version of the
problem, in addition to fixating some of the matrices, can be algebraically
divided into solving a column subproblem for each of the columns of the original
matrices and, in the transposed view, each of the rows of the original matrix.

Chapter 3. Method and proposed algorithms 50

Our main contribution is using a new scalable approach for solving the
column sub-problems to post-process matrices factorized by gradient-descent
approaches. Gradient-based methods can deal with large matrices and provide
the first approximation needed to solve these problems. Internally, they use
alternating minimization until they converge in two almost binary matrices
with low reconstruction error. As we discussed before, other approaches in
related work can either: (1) obtain matrices with almost binary entries that,
when are thresholded, have a significant loss in precision or (2) obtain matrices
with truly binary entries but with small sizes.

Our first intuition was to take these matrices and solve exactly the
linearized formulation over each matrix W and H. Thus we loop through the
rows of a given matrix A and the approximations yielded by gradient descent
algorithms W and H. We fixate W and use its columns as a basis to recalculate
each row of H by looping through the columns of A. Then we run a similar
procedure for the transposed view.

We show the pseudo-code for this procedure in 3.

Algorithm 3: Our proposed BackDisc algorithm that uses the BackCol-
umn algorithm for recovering the thresholding error loss.

function BackDisc(A, W):
Let |M|, |N | := dimensions of target matrix A
Let |M|, |G| := dimensions of approximation matrix W
Let H := matrix of zeros with dimensions |G|, |N |
for v in N :

I(hn)∗, OF ∗ := BackColumn(an, W , G, Q := I(an), I(hn) := ∅, OF := |I(an)|)
hn := reconstruct column hn of H assigning values 1 to positions I(hn)∗

Let W := matrix of zeros with dimensions |M|, |G|
for t in M:

I(wm)∗, OF ∗ := BackColumn(am, H, G, Q := I(am), I(wm) := ∅, OF := |I(am)|)
wm := reconstruct rows wm of W assigning values 1 to positions I(wm)∗

return W , H

At a glance, we are fixating a matrix W and solving the linearized
problem for each row of H. Then we fixate H and solve the linearized problem
for each row of W just once. We solve these two problems by separating each
column of A and running the BackColumn procedure in a loop. Then we apply
the same method to the transposed view of the problem by fixating the rows
of H calculated previously and solving the linearized problem for each row of
transposed W .

Chapter 3. Method and proposed algorithms 51

3.10
The PCA/SVD lowerbound

There is a well-established fact that the Truncated Singular Value De-
composition or Principal Component Analysis produces the best approxima-
tion of rank-k to any given real-valued matrix (ECKART; YOUNG, 1936) and
(GOLUB; LOAN, 2012).

So, let’s:

A
PCA−−−→

k-SVD
Uk · Σk · V T

k

the truncated SVD decomposition of A, in which Uk and Vk are orthonor-
mal rotation matrices with k columns and Σ is a diagonal square matrix with
k singular values, that work as a directional stretchers.

So, the error is calculated by:

∥∥∥A − Uk · Σk · V T
k

∥∥∥
2

/ ∥A∥2

is the deterministic minimum possible error that any decomposition could
have using rank-k for any real-valued or binary-valued given matrix A.

Therefore, in all the applications, we use this error as a lower bound and a
measure of the hardness or informally the suitability for grouping the instance.
That means some instances are so hard to represent in lower ranks that the
error is still high even in a more general factorization with the guaranteed best
approximation.

We expect any approach to factoring the matrix into binary matrices to
produce a result with a much higher Frobenius norm error. However, the lower
bound provided by the PCA allows us to understand if the problem instance
is intrinsically hard for grouping or factoring.

3.11
The problem of the Boolean Matrix Multiplication

Many previous works measure the loss reconstructing the A using an
operation they call boolean matrix multiplication and a covering indicator.
We chose not to use such an approach for two reasons.

First, it disregards the problem of overcovering a position with more
than one component. Thus, it is a more forgiving error metric. Also, and most
importantly, it makes sense only when comparing strictly boolean (binary)
results, whereas our approach includes intermediate steps that are real-valued.
It would be impossible to compare if there was a loss or a gain against real-
valued results.

Chapter 3. Method and proposed algorithms 52

Definition 3.7 (Boolean matrix multiplication (BoolMM)) Let bina-
ry/boolean matrices W ∈ {0, 1}m×k and H ∈ {0, 1}m×k. Their boolean matrix
multiplication (BoolMM) aggregates the k components by OR (∨) operation
instead of a regular summation. Consequently, their boolean product W ⊙ H

results into binary/boolean matrix Abool ∈ {0, 1}m×n. Thus their inner-product
(row-column) view can be calculated as follows: for each entry abool

mn of matrix
Abool = W ⊙ H:

abool
mn =

∨
k

wmk ∧ hkn =
∨
k

wmk · hkn

The introduction of the OR operation makes it impossible to use this
as a metric for real-valued matrices. Therefore, any approach using this
metric cannot compare itself with relaxed versions of the problem or use a
deterministic lower bound offered by the principal component analysis.

Now we present a lemma that proves the boolean multiplication W ⊙
H produces matrices with lesser norm than matrices produced by regular
multiplication W ·H. Then we show that this implies that always the Frobenius
norm using the boolean multiplication will also be smaller using the boolean
matrix multiplication, making it a more forgiving metric.

Lemma 3.8 (The BoolMM lesser norm)

∥W ⊙ H∥2 ≤ ∥W · H∥2 → ∥Abool∥2 ≤ ∥Aregular∥2

Proof. Let Aregular ∈ m×n be the regular matrix multiplication product of W ·H.
Then each entry aregular

mn of Aregular can be defined as:

aregular
mn =

∑
k

wmk · hkn

Consequently, we divide it into two cases. First, when ∨
k wmk · hkn = 0,

it means that all k pairs of wmk · hkn are also zero, then their summation is
zero. Thus in this case, abool

mn = aregular
mn = 0.

In the other case, when ∨
k wmk · hkn = 1, then at least one of the k pairs

of wmk · hkn is one. Thus, in this case 1 = abool
mn ≤ aregular

mn ≤ k.
Finally, if for all abool

mn ≤ aregular
mn , and because the norm is a function of

the summation over all amn, then ∥Abool∥2 ≤ ∥Aregular∥2. ■

For this reason, we can extend this lemma to the approximation error.

Theorem 3.9 (The BoolMM creates a forgiving metric) The Frobe-
nius norm error calculated using the boolean matrix factorization is always

Chapter 3. Method and proposed algorithms 53

less or equal to the one calculated using regular matrix factorization.

∥A − W ⊙ H∥2 / ∥A∥2 ≤ ∥A − W · H∥2 / ∥A∥2

Because the reconstruction W · H can produce entries that are larger than 1,
up to rank k, it penalizes in the norm the effect of over-covering a position in
the original matrix A with more than one component.

Proof. This proof is similar to the argument in the previous lemma. Let each
entry of the given matrix A be agiven

mn . Then the error matrix has entries
agiven

m n − abool
mn in the A − W ⊙ H case, and agiven

m n − aregular
mn in the A − W · H

case.
In the case where abool

mn = aregular
mn = 0 then the term (agiven

mn − abool
mn)2 =

(agiven
mn − aregular

mn)2.
In the other case, when 1 = abool

mn ≤ aregular
mn ≤ k, we have two subcases.

The wrong covering subcase when agiven
mn = 0 then the error for position

m, n is of the BoolMM (agiven
mn − abool

mn)2 = (0 − 1)2 = 1 whereas for the regular
matrix multiiplication 1 ≤ (agiven

mn − abool
mn)2 ≤ k2.

The other subcase is the covering/overcovering, where agiven
mn = 0. The

BoolMM error is also fixed (agiven
mn − abool

mn)2 = (0 − 0)2 = 0, while the regular
matrix multiplication will have error zero if it covers only one time, but will
penalize the overcovering of the position 0 ≤ (agiven

mn − abool
mn)2 ≤ (k − 1)2.

Therefore, the error is always greater or equal for each entry in the error
obtained by the regular matrix multiplication. Then, we can affirm:

∥A − W ⊙ H∥2 ≤ ∥A − W · H∥2

And finally,

∥A − W ⊙ H∥2 / ∥A∥2 ≤ ∥A − W · H∥2 / ∥A∥2

■

Thus, calculating the error using the regular matrix factorization is a
more strict metric in the sense that it always indicates a greater error.

Whenever there is an over-covering effect of two or more components cov-
ering the same position, the Boolean Matrix Multiplication masks it from the
calculation, by setting the reconstruction to one. Even worse, the Boolean Ma-
trix Multiplication doesn’t allow for comparing the error loss with continuous
methods and bounds.

4
Small Synthetic Cases and Algorithm Comparison

In this chapter, we present three small cases which could be solved easily
by hand and paper. Although some solutions can be obvious, the algorithms
we compared did not produce correct solutions. Thus, we believe this chapter
serves as a side note on the quality of the implementations regardless of the
metric used to evaluate it. Also, it raises interesting questions that we will
address in the discussion or in future work.

We propose three synthetic cases: A, B, and C. They are 5 × 5 matrices
of rank two, and their factorization is of increasing difficulty for testing some
different aspects. Case A tests the ability to detect balanced components.
Case B tests the ability to detect unbalanced and not contiguous components.
Finally, case C tests the ability to detect components with one position with
ambiguous belonging. The importance of this chapter is also to compare some
qualitative aspects regardless of differences in error metrics.

For each of these cases, we apply an implementation of the (working)
algorithms in R Package in (DESOUKI, 2021), GreConD (BELOHLAVEK;
VYCHODIL, 2010), and TopFiberM (DESOUKI; RöDER; NGOMO, 2019), as
well as a simplified version of our proposed BackDisc pipeline. In this simplified
pipeline, we use thresholds tw = .5 and th = .5. Also, since Zhang’s algorithm
(ZHANG et al., 2007) implementation by (ZITNIK; ZUPAN, 2012) is not
deterministic and the first step in our proposed BackDisc pipeline, the whole
pipeline tends to generate different answers in each run. Thus, we present three
runs of our proposed BackDisc pipeline as examples.

4.1
Case A

In this case, we test if these factoring algorithms can catch two balanced
components using rank-2. The components should weigh the same in the
Frobenius Norm, and they are contiguous. Also, there is no overlap in entries;
every entry belongs to a single square pattern.

Therefore, this case should ideally produce the following factorization.
The other alternative would be a permutation of the components, that is,
columns of the mixture matrix W and the factor or dictionary matrix H.

Chapter 4. Small Synthetic Cases and Algorithm Comparison 55



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1


−−−→
ideally



1 0
1 0
0 0
0 1
0 1


·

 1 1 0 0 0
0 0 0 1 1



4.1.1
Case A - GreConD

BMF−−−−−→
GreCond



1 1
1 1
0 0
0 0
0 0


·

 1 1 0 0 0
0 0 0 0 0

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



4.1.2
Case A - topFiberM

BMF−−−−−−→
topFiberM



1 0
1 0
0 0
0 0
0 0


·

 1 1 0 0 0
0 0 0 0 0

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



4.1.3
Case A - Our BackDisc Pipeline

BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 1



1 0
1 0
0 0
0 1
0 1


·

 1 1 0 0 0
0 0 0 1 1

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1



Chapter 4. Small Synthetic Cases and Algorithm Comparison 56

BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 2



0 0
0 0
0 0
1 0
1 0


·

 0 0 0 1 1
0 0 0 0 0

 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1



BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 3



0 1
0 1
0 0
1 0
1 0


·

 0 0 0 1 1
1 1 0 0 0

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1


In this first case, we observe that both heuristic algorithms were able

to detect only one of the components, while our proposed BackDisc pipeline
could detect both of them in two out of three runs. GreConD also duplicated
the column in the first matrix, while the associated row in the second matrix
had entries equal to zero.

4.2
Case B

This case is more complicated because one of the components does not
add much to the error being minimized. Thus, an algorithm can ignore it as an
outlier and not take advantage of the space for a second component to capture
the pattern perfectly.



1 1 0 0 0
1 1 0 0 0
0 0 0 1 1
0 0 0 0 0
1 1 0 0 0


−−−→
ideally



1 0
1 0
0 1
0 0
1 0


·

 1 1 0 0 0
0 0 0 1 1



Chapter 4. Small Synthetic Cases and Algorithm Comparison 57

4.2.1
Case B - GreConD

BMF−−−−−→
GreCond



1 1
1 1
0 0
0 0
1 1


·

 1 1 0 0 0
0 0 0 0 0

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0



4.2.2
Case B - topFiberM

BMF−−−−−−→
topFiberM



1 0
1 0
0 0
0 0
1 0


·

 1 1 0 0 0
0 0 0 0 0

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0



4.2.3
Case B - Our BackDisc Pipeline

BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 1



0 1
0 1
0 0
0 0
0 1


·

 0 0 0 0 0
1 1 0 0 0

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0



BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 2



1 0
1 0
0 0
0 0
1 0


·

 1 1 0 0 0
0 0 0 0 0

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0



Chapter 4. Small Synthetic Cases and Algorithm Comparison 58

BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 3



0 1
0 1
1 0
0 0
0 1


·

 0 0 0 1 1
1 1 0 0 0

 =



1 1 0 0 0
1 1 0 0 0
0 0 0 1 1
0 0 0 0 0
1 1 0 0 0


This case has proven to be harder. As expected, all algorithms produced

wrong answers, with the exception of our proposed BackDisc pipeline getting
it right in the last run. At least, the algorithms prioritized covering the larger
pattern most of the time, but they were not able to consistently take advantage
of an extra component to capture the smaller pattern.

4.3
Case C

This case tests the ability of the algorithms to capture a pattern with a
shared position. This should show the intricacies of their behavior because Gre-
ConD in (BELOHLAVEK; VYCHODIL, 2010) and TopFiberM (DESOUKI;
RöDER; NGOMO, 2019) use the reconstruction of their factorization using
the Boolean Matrix Multiplication, so they should disregard the problem of
overcovering. In contrast, our proposed BackDisc pipeline minimizes the re-
construction through regular matrix multiplication but a linearized version of
the Frobenius reconstruction error minimization. This version penalizes the
effect of overcovering, and we wanted to verify if this aspect would make the
response more sparse.



1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
0 0 1 1 1
0 0 1 1 1


−−−−−→
ideally ??



1 0
1 0
1 1
0 1
0 1


·

 1 1 1 0 0
0 0 1 1 1



Chapter 4. Small Synthetic Cases and Algorithm Comparison 59

4.3.1
Case C - GreConD

BMF−−−−−→
GreCond



1 1
1 1
1 1
0 1
0 1


·

 1 1 1 0 0
0 0 1 0 0

 =



1 1 2 0 0
1 1 2 0 0
1 1 2 0 0
0 0 1 0 0
0 0 1 0 0



4.3.2
case C - topFiberM

BMF−−−−−−→
topFiberM



1 0
1 0
1 0
0 0
0 0


·

 1 1 1 0 0
0 0 0 0 0

 =



1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0



4.3.3
Case C - Our BackDisc Pipeline

BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 1



1 1
1 1
1 1
0 1
0 1


·

 1 1 0 0 0
0 0 1 0 0

 =



1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 1 0 0
0 0 1 0 0



BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 2



1 0
1 0
1 1
0 1
0 1


·

 1 1 1 0 0
0 0 0 1 1

 =



1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
0 0 0 1 1
0 0 0 1 1



Chapter 4. Small Synthetic Cases and Algorithm Comparison 60

BMF−−−−−−−−−−−−−→
Zhang+BackDisc run 3



1 0
1 0
1 1
0 1
0 1


·

 1 1 1 0 0
0 0 1 1 1

 =



1 1 1 0 0
1 1 1 0 0
1 1 2 1 1
0 0 1 1 1
0 0 1 1 1


TopFiberM also discovered one of the two patterns in this case, just as it

has in the last case. GreConD had interesting behavior in this case; it not just
was not able to detect the second component in full, but it also overcovered
using an unnecessary dense second component.

Our approach got it right the third time with the expected overcovering
in the central position. The other responses were surprisingly close. The first
response was also dense but did not overcover three positions like GreConD
did. The second response was a choice of not covering two positions instead of
overcovering the central one.

All this variability ties back to the choice of error metric to be minimized.
GreConD did present a significant unnecessary intersection; this must be linked
with not penalizing overcovering by using the boolean matrix multiplication.

5
Main Application: Process Mining for Petrochemical Batch
Processes

In petrochemical batch processes, the state of the valves is representative
of the state of the whole process. Certain combinations of opened and closed
valves are necessary to enable process phases and their objectives. Although
the operational procedures are well known, there are situations where the
operation must be slightly different. It is vital to detect and document those
variations. Thus, there is a great need for automatic visualization of the process
for training and supervision.

There are process discovery algorithms that can use the log of events in
the process and try to describe them as flowcharts (AALST; AALST, 2011).
The problem is that in modern petrochemical batch processes, hundreds of
valves generate opening and closing events, and there is no indication of
when the process returns to the same state as before. Therefore, the standard
algorithms are inadequate to deal with this setting.

Process discovery algorithms need a clear definition of a case’s begin-
ning and ending. Petrochemical batch processes are recurrent, approximately
returning to the same state in a predetermined cycle duration. Therefore, it is
another challenge to identify precisely when the process returns to the same
state as before, without any prior knowledge of the process or the installation
specificities of each refinery. The slight variations in batches can also haste or
delay the end of processing a specific batch.

Moreover, process discovery algorithms have difficulty working with
hundreds of events because they rarely have enough order to create cohesive
flowcharts (AALST; AALST, 2011). It is more likely to create "macaroni"
flowcharts, with hundreds of boxes connecting themselves with thousands of
arcs. Therefore, standard algorithms are inadequate to deal with this setting
and produce understandable process representations.

Our approach deals with these problems separately, using two matrix
decomposition techniques. First, we use the principal component analysis
(PCA). If there is a strong cyclical behavior, it shows in one of the first columns
of the factorized matrices. It is possible to use this factorization to detect which
timestamps the process returns to the same state. It is also possible to compare
in the reduced space if processes were similar enough to configure a cohesive
modus operandi.

Then, we use binary matrix factorization (BMF) to accomplish two tasks:

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 62

discover which groups of valves tend to be opened at the same timestamps
and which groups discovered this way were opened at each of the timestamps.
Instead of working with each event of opening and closing of individual valves,
we propose to work with discovered alignments made of groups of valves. In
this chapter, we compare the Frobenius Norm Error and the time it took to
produce the results of the BMF algorithm using the standard implementation
of the BMF algorithm in the Nimfa package (ZITNIK; ZUPAN, 2012) and
discretizing its results by two methods.

We compare discretizing it with our custom formulation for using the
Gurobi solver, presented in 3-3 and compare it to using our proposed BackDisc
pipeline and the BackColumn presented in chapter 3. We also compare these
results of the BMF algorithm using the GreConD and TopFiberM algorithms.

Both factorizations, BMF and PCA, are the fundamental step to a new
pipeline for solving this and produce understandable representations of the
process.s problem. We first describe the steps of this pipeline, present the
measurable algorithm results for the sake of comparison in the context of this
thesis, and then present the Gantt charts produced to visualize the process in
different periods of time in two different refineries.

5.1
Pipeline

Our objective is to visualize batch processes where the main indicators
of state are which valves forming alignments are open. Our proposed pipeline
bifurcates into two branches then they merge for the final plotting of the batch
process representative Gantt charts.

Convert
to Binary

Matrix

PCA
Savitzky

Golay
Filter

Production
Cycle Seg-
mentation

Similar
cycles

selecting

BMF
Traces

& Edges
detection

Overlaying
and Gantt

plotting

Figure 5.1: Our proposed Gantt pipeline for obtaining Gantt charts using PCA
and BMF

First, we apply the principal component analysis and smooth the com-
pressed signal through time using a polynomial filter using the Savitzky-Golay
filter (SAVITZKY; GOLAY, 1964). The smoothed signal is periodic, and its
local maxima, local minima, and points of intersection in the y = 0 line often

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 63

indicate turning back to the same state. We chose to define a production cycle
between the times where the smoothed projected curve intercepts the y = 0
line. Then the curve segments can be compared to each other to find similar
cycles.

The PCA also allows us to compare time periods within a larger dataset
in which the process behaved more consistently. We must select a series
of contiguous production cycles with a similarity measure above a certain
threshold. Then, we can overlay the production cycles and plot the Gantt
chart of the process.

Also, in the other branch, we cluster valves into groups and determine
when these groups were used in time using the binary matrix factorization
(BMF), simple thresholding, custom mixed-integer formulation, or using a
commercial mixed integer solver or our proposed BackDisc pipeline using the
BackColumn procedure for its discretization, and reconstruction error recov-
ery. Then, we detect sequences of groups with temporal relationships using a
custom mixed-integer formulation or an adaptation of the BackColumn proce-
dure. Lastly, we post-process all these pieces to obtain a full representation of
the Plant as a Gantt Chart.

In this setting, we define V as the set of valves to be monitored, and we
define T as the set of timestamps in which we sample the state of valves. We
also define matrix A[T ×V] as the matrix with binary entries atv ∈ {0, 1}. An
entry atv equals one if the valve v was open at timestamp t.

In figure 5.3, we present intermediate results of both factorizations in
parallel. The PCA decomposes the valves samples matrix A into Uk · Σk · V T

k ,
and we plot the first column of U as the signal that is most representative of
the valves states in time. As we can observe, it is periodical. We smooth it and
segment it in time. In the same figure, we present below the binary columns of
matrix W obtained using BMF. They represent groups of valves used through
time.

Some of the aspects appear very clear in this figure, such as the produc-
tion cycles representation, their similarity, and also when this similarity streak
is broken at the middle of the horizontal axis (time) representation. We can
observe a longer cycle in the middle of the example that breaks the timeline
into two periods with internal cohesion.

We discuss each of these Gantt pipeline branches in detail in the following
sections.

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 64

5.1.1
Principal component analysis (PCA) for cycle segmentation and temporal
cohesiveness selection

The PCA is an algorithm for capturing greedily the variance of a given
matrix, constructing the best low-rank approximation rank by rank. Let
A[T ×V] a real-valued matrix, and G a desired rank of approximation, the PCA
algorithm returns orthonormal matrices U[T ×G] and V[V×G], and a diagonal
matrix Σ that when multiplied as in U · Σ · V T = Aapprox. This decomposition
can be used for signal/image compression, embedding observations in a lower
dimensional and orthogonalized space, and enhancing the predictive power of
simple machine learning methods such as decision trees (WOLD; ESBENSEN;
GELADI, 1987). In matrix V , the most frequent patterns of opening of valves
are captured, and in matrix U , the oscillations in the state of the industrial
Plant are compressed.

The outer product of the first column of U and the first row of V T scaled
by the element σ11 of Σ is the best approximation of rank one to the original
decomposed matrix. Since matrix U and V can have positive or negative entry
values, it is common in some cases for the first principal components to assume
two common patterns, one using positive values and another using negative
values. Consequently, it captures two opposing patterns of opening of valves
in the same component, expressed in the first row of V T .

For instance, if we process the training data of the famous hand-written
digit recognition dataset MNIST from Lecunn in (LECUN, 1998), we observe
that the first principal component represents the hand-written zero pattern
using positive values and the hand-written ones pattern in the negative
direction. It captures two opposing patterns in the same component, expressed
in the first row of V T . Regions are more present in the written digit 0 as
positive in orange and regions of the written digit 1 as negative in purple. We
demonstrate this effect in figure 5.2.

0 5 10 15 20 25
0

5

10

15

20

25

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

Figure 5.2: Principal component of the training data in the MNIST dataset as
an intuition.

Therefore, in cyclical settings, we observe that the first principal compo-
nent in the first row of V T tends to represent a pattern of the valves of the

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 65

Plant on the positive side and another pattern on the negative side. Conse-
quently, in the first column of matrix U , we observe the effect of a temporal
oscillation between these patterns, revealing both the duration of and similar-
ity between production cycles. At the top part of figure 5.3, we see plotted in
blue a segment in time of the first column of matrix U . The pattern is almost
periodic, although it has a strange shape. We applied a polynomial filter, the
Savitzky-Golay smoothening technique (SAVITZKY; GOLAY, 1964), to ob-
tain a curve with less noise. The smoothed curve is represented as the dark
yellow curve at the top of figure 5.3.

We established a time segmentation rule the instant the smoothed curve
crossed the origin (y = 0) going down, with a negative derivative. Figure 5.3
represents this segmentation with red vertical lines. Temporal segmentation
is used to later segment the temporal components of both factorizations
into production cycle chunks. Then, consecutive chunks can be compared
to one another. The PCA’s first column of the compressed space U[T ×1] can
be segmented into segments. Suppose the segmentation rules identified a set
S of production cycle transitions at timestamps t1, t2, . . . , tS . Between these
timestamps, we define segments of vector U[T ×1] as Cs = U[ts:ts+1,1]. These
segments capture the variation between opposing plant states described by
the positive and the negative part of the first row of matrix V T during the
same cycle.

These segments can be compared to check the similarity between cycles.
We define the distance between cycles as the normalized Frobenius norm of
the difference between cycles ∥Cs − Cs+1∥2 / ∥Cs∥2. In the segments that do
not have the same length, we pad the shortest one with entries equal to zero.
The main idea is to filter contiguous intervals of time in which this difference
between cycles is within a reasonable threshold. In figure 5.3, we can notice
visually that there is a change in pattern from the seventh segment forward.
For the final purpose of visualization of the production cycle, big changes in
the process introduce noise that perturbs the chart. If the process suddenly
goes through a change, the method will have a more difficult task of depicting
two production patterns. Hence, we propose a method for selecting cohesive
cycles.

Also, the processing time of subsequent steps of the algorithm, in special
the Binary Matrix Factorization, is very high for more than a thousand
timestamps. Therefore, we only run the next steps in selected segments of a
large dataset. The Frobenius norm between cycles allows us to identify periods
with internal consistency and run the next steps separately.

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 66

5.1.2
Binary Matrix Factorization (BMF) for valve clustering and detecting the
use of groups of valves in time

Given a matrix with binary entries A[t×v], the binary matrix factorization
obtains ideally two also binary matrices W[t×g] and H[g×v]. Each row of matrix
H will represent groups of valves that tend to open together, potentially
representing alignments. Each row of matrix W will represent the timestamps
to which the corresponding groups of valves were open.

We obtain a first approximation of the factorization using the gradient
descent algorithm proposed by Zhang et al. in (ZHANG et al., 2007) and
implemented by Zitnik and Zupan in the python package Nimfa (ZITNIK;
ZUPAN, 2012). The algorithm outputs two matrices W ∈ [0, 1]|T |,|G| and
H ∈ [0, 1]|G|,|V|, such that the multiplication W · H is an stable local optimum
approximation for A.

Therefore, both our proposed BackDisc pipeline or a modern mixed-
integer solver with our formulation 3-3 can obtain a truly binary matrix H,
using the fixated W obtained by Nimfa then thresholded, and later fixating
the value of H obtained in the first optimization of formulation 3-3 and solve
for W .

Some performance issues may arise when running the formulation. The
running time of the factorization is increased greatly for matrices of more than
hundreds of columns and rows, more so for a number of groups greater than 20.
We compare the discretization time using the formulation and our proposed
BackDisc pipeline.

We present a transposed view of the resulting matrix W at the bottom
of the figure 5.3. In this example, we indicate an entry wtg = 1 of matrix W

in yellow if a group of valves g was open at time t and in purple otherwise.
Notice that there is temporal cohesion. Groups of valves tend to remain open
for several hours, so if wtg is one, then w(t+1)g will also be if group g remained
open. Also, notice that some groups of valves tend to have a sequential pattern,
that is, one closes, and consequently, another opens. When these patterns are
too frequent, groups may have a sequence relationship. We will discuss this in
the next section.

5.1.3
Trace detection

At this point in our proposed BackDisc pipeline, we also have the option
to detect relationships between the groups of valves in such a way that indicates
a sequence of behaviors, a group that usually follows another.

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 67

The major challenge to detect this is that processes can have operations
in parallel. Whenever two groups of valves are open simultaneously in a row
of W , there will be more than one entry equal to one. If there is a sequential
relationship between groups, that means when one group closes, the other
opens. We have to exclude parallel groups in cases that, by coincidence, open
at the same time as the other but carry no real sequential relationship.

We select columns of matrix W in such a way that they approximately
cover all timestamps of the set T . So we define the binary vector x ∈ {0, 1}G

as the vector that selects columns of W . Ideally, all groups of the factorization
would exactly be open when the other closed, then for all instants t, the sum∑G

g wtgxg = 1. But any misalignment would deem the selection of groups
infeasible. We want to approximately cover all instants t. Thus, we want to
minimize the function |W·x − 1|, where 1 is the vector of all entries equal to
one of size T .

We can eliminate the modulus operation by using a mixed integer solver.
Therefore, we introduce slack variables r+

t and r−
t that will assume a positive

value every time that a time t was not covered or many groups overcovered.
In 5-1, we show the MIP formulation.

minimize
xg ,r+,r−

∑
t∈T

r+
t +

∑
t∈T

r−
t (5-1a)

subject to:

(
∑
g∈G

Wtg.xg) + r+
t − r−

t = 1, ∀t ∈ T (5-1b)

r+
t , r−

t ≥ 0, ∀t ∈ T (5-1c)

xg ∈ {0, 1}, ∀g ∈ G (5-1d)

The output x will indicate a selection of groups. If we filter matrix W

to contain only the columns selected by x, we should be able to perceive a
transition between groups of open valves. At most instants t, a row of this
filtered matrix Wx should have only one entry equal to one. A simple algorithm
can loop through all instants t in time and see if there was a change in the
opened groups compared with instant t + P with period P ahead.

This algorithm checks for time t, which is the entry equal to one; then
we repeat the procedure for instant t + P . Therefore Gbefore = argmax(Wt)
and Gafter = argmax(Wt+P). If Gbefore and Gafter are different, we include the
direct relation Gbefore → Gafter and its timestamp t into a list.

For a good solution, we consider selections of groups that cover almost all

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 68

timestamps. If the objective function of the problem 5-1 will be approximately
close to the sum of timestamps not covered to the time stamps over-covered.
We can normalize this objective function by the number of timestamps ∥T ∥ in
order to make sense of the proportion of defective timestamps. Any optimal x

can be evaluated by the percentage of defective timestamps; we established a
threshold of 10%. So it is possible for more than one solution to be below this
threshold. The presence of more than one solution within the threshold is an
indicator of parallelism in the process.

Consequently, we devised a mechanism to generate all the feasible
solutions within the threshold. After the first round of optimization, if we
found a solution with a percentage lower than the threshold, we added the
solution to a list, detected transitions using the corresponding set of columns,
and then inserted it into the formulation 5-1 a new constraint that prohibits
the solver to output it again. Formally, if the previous round gave solution
x we inserted to formulation 5-1 the constraint ∑

g∈x xg ≤ |x| − 1. Then we
stopped at the first solution with the percentage above the threshold.

This formulation can also be adapted to be solved by the BackColumn
algorithm. If we notice, minimizing |W·x−1| is the same as fixating the matrix
W and solving a column of all ones 1. The columns_solve algorithm just needs
to be adapted to receive a threshold of the desired objective function, then
the mechanism to save the best solution stores all solutions which have the
objective less than the saving threshold.

5.1.4
Gantt chart

In figure 5.3, we show an intermediate representation of the pipeline to a
refinery delayed coker unit. This represents the results of the methods proposed
in subsections 5.1.1 and 5.1.2. We observe the oscillating pattern of the PCA
through time and the corresponding time segmentation in red vertical lines.

The bottom picture corresponds to the transposed view of matrix W .
Each of the fifteen rows represents a group of valves that act together,
represented in yellow when the group is opened and in purple when it is closed.
The main idea of the Gantt chart is to segment matrix W through time using
the segmentation detected using the PCA and combining these submatrices.

We use the production cycle segments of matrix W and combine them
by simple summation and thresholding. We pad with zeros smaller W segment
submatrices until every segment representing a single production cycle contains
the same number of timestamps (rows). After that, we sum element-wise all
the segment submatrices, obtaining a matrix that corresponds to the aggregate

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 69

behavior of all the production cycles in the time period chosen. Then we take
the median among the entries of the resulting matrix, and for all positions
above the median, we set to 1 and 0 otherwise.

5.2
Experiments

To test our proposed Gantt pipeline, we obtained data from two delayed
coker units of a large petrochemical company in Brazil. For each refinery, we
obtained data on the state of valves related to the batch processes inside the
delayed coker unit. These datasets contained samples from the valve states with
30 minutes between samples during approximately one year, which translated
to approximately 17 thousand samples or timestamps. Table 5.1 shows some
characteristics of the instances.

The delayed coker process is a semi-batch process in which heavy residues
of oil are thermally cracked and then converted into solid Coke and vapor inside
coke drums. The vapor is then converted into more profitable liquids (Naphtha,
Gasoil) and hydrocarbon gases. (SAWARKAR et al., 2007). For the process to
be continuous, it is usual to set pairs of alternate Coke drums. When one of
the drums is cooling, and the heavy Coke is purged, the other drum is filled
up until the middle of the production cycle, when the input stream is switched
again.

Now we present in table 5.1 the characteristics of the datasets. The first
rows show the beginning and end of the dataset, the number of timestamps,
the number of valves, the number of cycles, the duration of each cycle, and

−2

0

2

0
2
4
6
8
10
12
14

Figure 5.3: The Gantt pipeline’s intermediate representation, in which the
X axis is time spanning a duration of 25 days. At the top, in blue is the
line chart of the first column U1 in the transformed space by PCA, and in
gold is a polynomial smoothing filter of this column U1. At the bottom is
the transposed view of matrix W , where entries wtv = 1 are represented in
yellow or purple otherwise. The red vertical lines represent the segmentation
of production cycles in time.

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 70

the number of time periods chosen. The time periods chosen are the number
of segments of the dataset that we obtained using the PCA and their median
length in hours. The last row shows the number of timestamps in each time
period. We chose the time periods with at least five cycles to ensure that the
time periods were internally consistent and had a minimum number of 5 similar
and contiguous production cycles.

At first glance, the PCA over the matrices for the whole year showed
production cycles in the form of recurring patterns. However, it also showed
that some recurring patterns changed their behavior from time to time. In a
real setting, a user is likely to choose a time period with high cohesion for
obtaining a clear picture of the operations during the time period. For that
reason, we established a time period selection rule for working separately with
time periods that were internally consistent.

We select time periods containing at least five cycles that have the
normalized Frobenius norm distance between consecutive periods lower than

Figure 5.4: Representation of a delayed coker unit by (COMMONS, 2007).
It is a semi-batch process in which heavy oil residues are thermally cracked
and then converted into solid Coke and vapor inside coke drums in the center.
Then, a continuous stream of heavy oil is fed into a switch alternating between
the two coke drums.

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 71

characteristics Refinery 1 Refinery 2
beginning Jan/2019 oct/2021
end dec/2019 sep/2022
timestamps 17529 16974
valves 96 52
cycles 168 256
cycle duration (h) 48 32
time periods chosen 6 11

Table 5.1: Datasets characteristics
50%. We considered any distance above this threshold as a sign of discontinuity
between cycles.

Using these rules, we selected 6 periods from refinery 1 and 11 periods
from refinery 2. For each of these periods, we ran the BMF proposed pipeline.
First, we decomposed it using Zhang’s (ZHANG et al., 2007) implemented
in Python package Nimfa (ZITNIK; ZUPAN, 2012). Then we search for
thresholds to approximate a binary matrix, obtaining approximation W̃ . And
finally, we post-process the resulting matrix using the formulation proposed in
3-3. In both PCA and BMF, we worked with the number of groups |G| equal
to 15.

We measure performances in terms of time in seconds and reconstruc-
tion error, using the Frobenius norm distance ∥A − W · H∥2 / ∥A∥2. The recon-
struction error of the PCA is used just as a measure of the best reconstruction
possible using a rank of 15 if the problem wasn’t constrained to produce binary
matrices.

We used a PC running Linux, processor 4× i7-4500U at 1.8 GHz, and 8
Gb of RAM for running this experiment. Specifically, for solving the BMF post-
processing formulation and the trace detection formulation, we used Gurobi
Optimizer version 9.1.2 build v9.1.2rc0. We show the results in table 5.2.

The thresholding search step in all tests was below a fraction of a
second, so we omitted it from the table. What we can observe is that
not only the proposed formulation in equations 3-3 obtains truly binary
matrices, it is a better alternative than simply thresholding. The thresholding
procedure deteriorates the reconstruction error deeming the resulting matrices
not adherent to reality.

5.2.1
Results

Our proposed formulation was able not only to recover the error loss that
came with thresholding but also could slightly reduce the error compared to
Zhang’s algorithm, which is counter-intuitive. If the problem was convex or

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 72

Instance Time (mm:ss) Error (Frob. Norm)
Ref. T cycles Zhang Gurobi BackDisc PCA GreConD topFiberM Zhang Thres Gur./BackDisc
1 863 9 00:02 03:22 <0:01 0.08 0.84 0.92 0.47 0.68 0.44
1 684 7 00:01 02:33 <0:01 0.06 1.09 0.85 0.41 0.63 0.36
1 578 6 00:01 02:09 <0:01 0.08 0.92 0.92 0.47 0.65 0.42
1 572 6 00:01 02:08 <0:01 0.07 1.08 0.93 0.47 0.69 0.42
1 1455 15 00:02 05:27 <0:01 0.09 1.02 0.92 0.48 0.70 0.43
1 719 7 00:02 02:41 <0:01 0.10 1.05 0.90 0.48 0.68 0.45
2 528 8 00:01 01:05 <0:01 0.03 1.11 0.93 0.43 0.60 0.37
2 833 13 00:01 01:41 <0:01 0.03 1.29 0.89 0.37 0.57 0.29
2 1475 23 00:02 03:00 <0:01 0.02 1.25 0.89 0.38 0.56 0.26
2 2561 40 00:03 05:09 0:02 0.03 1.21 0.91 0.40 0.60 0.28
2 3036 47 00:04 06:05 0:02 0.05 1.10 0.93 0.43 0.64 0.31
2 1266 20 00:02 02:35 <0:01 0.03 1.16 0.90 0.39 0.59 0.33
2 388 6 00:01 00:47 <0:01 0.02 1.21 0.90 0.37 0.58 0.25
2 1811 28 00:03 03:40 0:01 0.04 1.14 0.90 0.43 0.63 0.35
2 983 15 00:02 01:59 <0:01 0.02 1.18 0.91 0.39 0.59 0.26
2 679 11 00:01 01:23 <0:01 0.02 1.19 0.92 0.40 0.58 0.29
2 1357 21 00:02 02:44 <0:01 0.03 1.08 0.94 0.42 0.65 0.35

Table 5.2: Runtime performance metrics. We omitted the benchmark running
times. All of the GreConD were below 1 per second, and all topFiberM were
all below .1 per second.

near convex, we would expect the gradient descent approach to always have
a better construction error than the strictly binary one because the decision
space of the relaxed problem, allowing for any value between 0 and 1, is larger
and contains the decision space of strictly binary matrices. That indicates
that this implementation of the gradient descent algorithm halts at a very
low-quality local optimum.

Finally, we subdivide matrix W into production cycles and combine the
production cycles in order to produce the Gantt chart. Also, we adjust the
timestamps of the detected hand-offs for the period, calculating the time delta
of when it happened since the beginning of the production cycle. Usually,
almost all production cycles have the same hand-offs at approximately the
same point in time.

So we take the median of these time deltas to position the upwards or
downwards arrows on the x-axis. We present the final Gantt chart for the two
refineries in selected periods in figures 5.5 and 5.6. We present all the Gantt
charts for all the selected periods in the appendix A.

The PCA approximates the singular value decomposition. Thus, it has
the best low-rank representation of the given matrix. Consequently, we observe
that for the chosen rank of 15, the reconstruction error of the PCA lower
bounds is possible to obtain with a more constrained factorization such as the
BMF.

Thus, the PCA served as a lightweight building platform to detect the
oscillating patterns of the production cycles and the detection of discontinuities
in how the process was operated. We devised an algorithm that can suggest
periods in time with low variability to help the subsequent steps of our pipeline

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 73

work with less noise.
We could detect that the process usually had cycles of approximately 48

hours and a higher variability between cycles in refinery 1. And in refinery 2,
cycles with approximately 32 hours and lower variability between cycles. These
production cycle lengths were later confirmed with personnel directly involved
in each refinery.

Our proposed BackDisc pipeline presented in 3 and our formulation
in equations 3-3, could post-process the approximation obtained by gradient

day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00 day 02-18:00 day 03-00:00

G02:V11,V14,V37,V60,V64

G00:V02,V27,V42,V47,V49,V56,V60,V62,V64,V66,V70,V79,V80,V87,V94

G07:V42,V47,V48,V49,V52,V56,V60,V62,V64,V66,V70,V87,V94

G06:V21,V24,V49,V56,V58,V60,V61,V62,V64,V65,V66,V70,V86,V87,V94,V95

G03:V04,V49,V52,V53,V57,V58,V61,V62,V65,V66,V70,V83,V84,V89,V94,V95

G09:V36,V39,V40,V49,V57,V61,V63,V65,V67,V70,V88,V89,V94,V96

G13:V01,V17,V36,V37,V39,V40,V49,V57,V61,V63,V65,V67,V70,V73,V77,V78,V89,V94,V96

G05:V12,V13,V43,V46,V49,V57,V61,V62,V63,V65,V66,V67,V70,V77,V78,V89,V94,V95

G11:V03,V25,V26,V27,V30,V36,V38,V49,V56,V60,V63,V64,V67,V70,V73,V81,V82,V87,V94,V96

G14:V25,V26,V27,V30,V49,V56,V60,V62,V63,V64,V66,V67,V70,V73,V87,V94,V96

G04:V22,V23,V34,V35,V72,V74,V79,V80,V93

G12:V72,V74,V93

G08:V52,V58,V73,V95

G01:V20,V58

G10:V15,V16,V17,V20,V73

X
No recurrent
activity

Open valve
group

11>14

14>0

0>6

6>3

3>5

5>13

13>9

9>11

14>8

8>6

13>2

2>11

1w 1m 6m YTD 1y all

Figure 5.5: Our pipeline’s final representation, the Gantt Chart. Lines indicate
groups of valves, and arrows indicate frequent maneuvers to change between
groups. Notice that the chart is a generic representation of the state of groups
of valves combining six 48 hours cycles in refinery 1 during the fourth selected
time period.

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00

G09:V44,V48

G12:V44,V48

G08:V01,V02,V03,V05,V31,V35,V36,V38,V39,V42,V43,V46,V47,V49

G13:V01,V02,V08,V16,V17,V31,V35,V36,V38,V39,V42,V43,V46,V47

G10:V01,V02,V06,V07,V08,V25,V26,V38,V40,V42,V43,V46,V47,V51

G04:V01,V02,V06,V07,V08,V21,V22,V27,V38,V40,V42,V46

G14:V01,V02,V27,V28,V29,V37,V40,V44,V48

G02:V01,V02,V06,V14,V18,V19,V27,V28,V29,V37,V40,V41,V45

G05:V01,V02,V06,V12,V13,V14,V32,V34,V37,V39,V41,V43,V45,V47,V52

G07:V01,V02,V12,V13,V14,V20,V23,V36,V39,V43,V47

G03:V01,V02,V06,V12,V13,V14,V43,V47

G00:V06

G06:V06,V41,V45

G11:V37,V41,V45

G01:V06,V09,V11,V41,V42,V45,V46,V50

X
No recurrent
activity

Open valve
group

10>13

13>8

8>7

7>5

5>2

2>14

14>4

4>10

5>3

3>2

1w 1m 6m YTD 1y all

Figure 5.6: The same chart for the fifth selected time period in refinery 2. The
chart is a generic representation of forty 32-hour production cycles.

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 74

descent methods discretizing them to strictly binary matrices, recovering the
great error loss that the greedy thresholding approach introduces.

An unexpected effect was to reduce the error loss to a point even lower
than the gradient descent methods. This represents that the bilinear aspect
of the relaxed problem must generate local optima that halt gradient descent
methods such as (ZHANG et al., 2007) at suboptimal solutions. The other
algorithms did not produce representations even close to being representative
of the original matrix, achieving error levels above 90%; our algorithm could
achieve error levels below 40%.

Before we proposed this novel discretization approach for the BMF, the
Gantt pipeline would choose between working with non-binary values and
thresholding. The user would have to interpret real values for both entries
hgv, which would be the strength of the belonging to a group, and real values
for entries wtg for the strength of the use of a group of valves. Intermediate
values such as .5 would mean that to explain an entry in the given matrix
atv = 1, there could be a combination of different groups where the same valve
would contribute.

The alternative would be to discretize the resulting matrices, incurring
an error loss to a level that deems the reconstruction matrix not representative
of the original one. Therefore, exists a complicated trade-off between the
interpretability and fitness of the original data.

Finally, observing the resulting Gantt chart, our proposed BackDisc
pipeline could detect two behaviors that are parallel in execution during the
whole operation. If we observe closely, the hand-offs represented by the vertical
arrows form two different traces. Finding two or more traces clearly indicates
parallelism in process, which is one of the greatest challenges for process
discovery algorithms (AALST; AALST, 2011).

The Gantt chart could also capture the parallel nature of the cooling
process in Refinery 1. The installation there consists of two pairs of coke drums
that are phased 6 hours from each other. The parallel traces represent the
changes in the openings of valves associated with each pair of coke drums. We
confirmed with the refinery personnel that the method approximately identified
which valve belonged to what drum.

In practice, we presented a theoretical framework that enables the
discovery of a petrochemical batch process without any prior knowledge
needed. The Gantt chart captures the production cycle length, important
valve alignments, their sequence in a trace of events, their length, and their
transitions at a glance.

Future research could explore many possibilities. The time represented in

Chapter 5. Main Application: Process Mining for Petrochemical Batch
Processes 75

PCA’s matrix U could be a strong indication of delays or significant changes
in expected steps. Another possibility would be to compare the decomposed
matrices of two different time periods to evaluate changes in the process length
and the existence of alternative alignment routes.

6
Other applications: Gene Expression, Topic Modelling, Rec-
ommendation Systems

In this chapter, we united other direct applications of the BackDisc
pipeline that we proposed in chapter 3. We will show how the BackDisc
pipeline can be used to solve binary matrix factorization that arises in different
domains. First, we present a comparison of our method to other algorithms
using their instances but using the Frobenius Norm Reconstruction error using
regular matrix multiplication as opposed to boolean matrix multiplication.

Then we run tests in other domains, such as gene expression, topic
modeling, and recommendation systems. The intriguing thing about these
domains is that they have different sizes, clusterability, and sparsity. We will
show that our method is able to handle these different domains and that it
is able to recover some reconstruction errors caused by thresholding, even in
challenging applications.

Each experiment followed linearly the following steps: (0) using a pre-
processing specific to the domain for obtaining binary matrices, (1) decompos-
ing the matrix using Zhang’s (ZHANG et al., 2007) algorithm implemented
by the python package Nimfa (ZITNIK; ZUPAN, 2012), (2) searching for the
combinations of thresholding of the matrices W and H which minimized the
reconstruction error, (3) ran the algorithm described in 3.

We designed the experiments to check if this approach would succeed in
different settings, both in terms of processing time, reconstruction sparsity and
reconstruction error. We measured the processing time of the steps 1, 2, and
3.

Specifically, we measured the times for running our algorithm for opti-
mizing over the matrix W and the matrix H separately. Our implementation
had no parallelization since, in the applications, the matrices tend to have an
order of magnitude more rows than columns, and the for-loop through rows to
obtain the binary version of matrix W usually takes much longer.

Secondly, we measure the sparseness of the reconstruction. One of the
aspects we noticed in preliminary tests is that the sparseness of the recon-
struction is an influential source of error in the thresholding approach. That
means we want to know if the thresholding approach tends to fixate entries to
zero in an exaggerated manner. Thus we measure the reconstruction error of
the thresholding approach and our algorithm and compare it to the original.
Notice that since the gradient-descent approach yields continuous results, it

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 77

produces a non-binary reconstruction. Then we could not measure its sparse-
ness.

Finally, we measure the reconstruction error using the Frobenius norm
as a fraction of the Frobenius norm of the original matrix. Formally, we
calculate using the formula ∥A − W · H∥2 / ∥A∥2. This measures how much
of the variance of the original matrix did the decomposition capture, even
though bounded by rank G.

We compare each step of the algorithm with a lower bound calculated
using the matrix’s principal component analysis (PCA). The PCA is an
algorithm for obtaining a partial or truncated singular value decomposition
(SVD), given the desired rank G. The SVD has an interesting property that
it has the best reconstruction possible using a given rank G.

Thus it serves as a deterministic and unique lower bound on the problem,
sometimes denoting if the problem is even expressible in lower rank factoriza-
tions. There are situations, in special in the Recommendation and Topic Mod-
elling, where the algorithm’s error is high, but the PCA lower bound shows
that the problem was hard to project to a lower rank G.

6.1
Comparison to other datasets in the literature

This section compares GreConD(BELOHLAVEK; TRNECKA, 2013)
and TopFiberM (DESOUKI; RöDER; NGOMO, 2019) to our proposed Back-
Disc pipeline using the same datasets used in (DESOUKI; RöDER; NGOMO,
2019), which are common to many papers in this community. The datasets are
Chess and Mushroom found in (ASUNCION; NEWMAN, 2007), DBLP found
in (MIETTINEN, 2009), Firewall1 (ENE et al., 2008) and Paleo by (LUCCH-
ESE; ORLANDO; PEREGO, 2010). We test the datasets for ranks 1, 2, 5, 10,
and 20 using the Frobenius relative loss using regular matrix multiplication
and time in seconds.

Below we present the table with the results.
We can observe that given more room to improve, the metric of the Frobe-

nius loss stays the same for topFiberM and greatly augments in GreCOnD.
Our BackDisc pipeline was able to scale to larger ranks taking advantage of the
increased space to improve the loss. Possibly because these algorithms are de-
signed to ignore the overcovering loss by calculating it using a specific boolean
matrix multiplication. Also, by their greedy construction, they must quickly
reach a level of error that they can not later improve upon.

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 78

Dataset time error

name rows columns Sparsity rank grecond topfiber BackDisc PCA grecond topfiber BackDisc

Chess 3196 76 0.486 1 0.262 0.022 1.884 0.48 0.90 0.62 0.62
Chess 3196 76 0.486 2 0.424 0.022 2.712 0.45 0.81 0.62 0.66
Chess 3196 76 0.486 5 1.185 0.032 5.761 0.37 0.87 0.62 0.58
Chess 3196 76 0.486 10 1.882 0.066 7.899 0.28 1.19 0.62 0.55
Chess 3196 76 0.486 20 3.109 0.092 18.745 0.16 1.66 0.62 0.48
DBLP 6980 19 0.129 1 0.014 0.007 2.360 0.79 0.93 0.90 0.93
DBLP 6980 19 0.129 2 0.034 0.024 2.693 0.72 0.87 0.90 0.83
DBLP 6980 19 0.129 5 0.078 0.019 4.243 0.61 0.73 0.90 0.70
DBLP 6980 19 0.129 10 0.147 0.058 7.513 0.43 0.61 0.90 0.57
Firewall1 365 709 0.123 1 0.315 0.010 0.468 0.47 0.59 0.99 0.52
Firewall1 365 709 0.123 2 0.420 0.013 1.029 0.34 0.44 0.99 0.47
Firewall1 365 709 0.123 5 1.172 0.026 2.070 0.17 0.81 0.99 0.38
Firewall1 365 709 0.123 10 1.399 0.062 3.442 0.11 1.61 0.99 0.32
Firewall1 365 709 0.123 20 2.152 0.129 5.911 0.07 1.61 0.99 0.17
Mushroom 8124 119 0.193 1 0.158 0.049 5.330 0.64 0.93 0.97 0.86
Mushroom 8124 119 0.193 2 0.308 0.051 9.881 0.59 0.88 0.97 0.81
Mushroom 8124 119 0.193 5 1.187 0.084 17.971 0.49 0.77 0.97 0.70
Mushroom 8124 119 0.193 10 2.232 0.155 24.305 0.41 0.85 0.97 0.66
Mushroom 8124 119 0.193 20 4.692 0.277 34.029 0.31 1.33 0.97 0.58
Paleo 501 139 0.05 1 0.025 0.006 0.276 0.91 0.99 1.00 1.00
Paleo 501 139 0.05 2 0.067 0.016 0.494 0.87 0.98 1.00 1.00
Paleo 501 139 0.05 5 0.220 0.029 0.631 0.80 0.95 1.00 0.97
Paleo 501 139 0.05 10 0.219 0.041 1.741 0.74 0.91 1.00 0.92
Paleo 501 139 0.05 20 0.323 0.037 2.157 0.65 0.83 1.00 0.85

Table 6.1: Comparison of time and error between our BackDisc pipeline and
the GreConD and TopFiberM algorithms. We apply them to the instances
described in (DESOUKI; RöDER; NGOMO, 2019) and the error using the
Frobenius norm with the regular matrix multiplication as discussed in chapter
3.

6.2
Gene Expression

The application of Binary Matrix Factorization for Gene expression data
was also introduced by Zhang et al. (ZHANG et al., 2010) for analyzing gene
expression data following their main paper in (ZHANG et al., 2007).

These datasets come from an innovation in mapping the genome, in-
troduced by the DNA microarrays and the Serial Analysis of Gene Expres-
sion. This allowed scientists to analyze thousands of genes in the same study
(SCHENA et al., 1995).

We used the Gene Expression Omnibus Dataset Browser (EDGAR;
DOMRACHEV; LASH, 2002) and (BARRETT et al., 2012) as the source
for our tests. The datasets gather gene expression over specific diseases or
conditions. Diseases range from colitis to maternal use of tobacco to a variety
of leukemia and cancer diseases. Our choice criteria were selecting datasets
related to diseases with the largest amount of samples.

We used the following datasets found in the URL National Center
for Biotechnology Information Gene Expression Omnibus Dataset Browser
by (CLOUGH; BARRETT, 2016) : GSE11223 (NOBLE et al., 2008);

https://www.ncbi.nlm.nih.gov/sites/GDSbrowser
https://www.ncbi.nlm.nih.gov/sites/GDSbrowser

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 79

GSE1133-GPL1073, GSE1133-GPL1074, GSE1133-GPL96 (SU et al., 2004);
GSE12417-GPL570, GSE12417-GPL96, GSE12417-GPL97 (METZELER et
al., 2008); GSE13355 (NAIR et al., 2009); GSE13576 (MEYER et al.,
2011); GSE1726 (MONKS et al., 2004); GSE1888 (DILLMAN et al.,
2005); GSE19392 (SHAPIRA et al., 2009); GSE19429 (PELLAGATTI et
al., 2010); GSE21521 (HINZE et al., 2010), GSE22845(TASKESEN et al.,
2011); GSE27272(VOTAVOVA et al., 2011); GSE27567-GPL1261, GSE27567-
GPL570 (LABRECHE; NEVINS; HUANG, 2011); GSE30310 (MORSE et
al., 2012); GSE30999 (SUÁREZ-FARINAS et al., 2012); GSE32474(PFISTER
et al., 2009); GSE3578 (IWAKAWA et al., 2007); GSE4115 (SPIRA et
al., 2007); GSE4290 (SUN et al., 2006); GSE50948 (PRAT et al., 2014);
GSE54514 (PARNELL et al., 2013); GSE6919-GPL8300, GSE6919-GPL92,
GSE6919-GPL93 (CHANDRAN et al., 2007); GSE755(TIAN et al., 2003);
GSE9820(SCHIRMER et al., 2009).

In these datasets, the expressions are real-valued entries. In Creighton
and Hanash (CREIGHTON; HANASH, 2003) and in Liu et al. (LIU; CHENG;
TSENG, 2013) have a discretization procedure based on the distribution of
the entries for each gene. For values at the higher end of the distribution, they
considered that a specific sample was up-regulated in that gene.

In contrast, an entry in the lower end was down-regulated. Their datasets
had a log-normal distribution, and they picked a threshold under which they
would consider that specific gene as down-regulated and another threshold over
which the expression would be considered up-regulated.

Our tests’ datasets come from a more diverse source from different stud-
ies. We verified that some datasets were already normalized. Some were not log-
normally distributed. Then we adapted their approach to an affine-invariant
approach, choosing up-regulated expressions from the fourth quartile of their
respective distribution and similarly choosing down-regulated expressions in
the first quartile.

Consequently, we could apply the same procedure to our tests, indepen-
dent of whether each of the authors that made their data available had different
data transforming procedures such as normalization or scaling. This procedure
also had the secondary benefit of fixing the datasets’ sparsity to 25%.

Therefore, we pre-processed these 31 instances. The resulting binary
matrices ranged from 4776 to 54765 rows representing each gene expression and
ranged from 158 to 416 columns because instances ranged in number of samples
from 79 to 208. Consequently, when our backtracking discretization algorithm
(BackDisc) was looping through rows, it had to solve tens of thousands of
discrete basis problems using the first procedure in each instance.

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 80

With these pre-process steps, we obtain a binary matrix with rows
representing genes and columns representing samples and regulation. By
construction, the sparsity of these matrices is very close to 25%. We run our
experiment in each of these datasets, varying only the rank of the factorization,
using ranks G ∈ {10, 20, 50, 100}. Also, we defined a time-out parameter
because, in some cases, when the rank was set to 100, the procedure ran
indefinitely.

We notice that the procedure can take long to post-process, especially
when the G is set to 100. We had an experiment cutoff at 1 hour; for ranks of
G = 100, only six cases finished under the one-hour limit.

We can also observe that the deterioration caused by the thresholding
procedure is accompanied by not tackling the sparsity of reconstruction at the
same level as the original. The thresholding tends to leave entries equal to zero
frequently. Fortunately, our approach recovers the sparsity and the level of the
reconstruction error.

We present in 6.1 the summary of the results of the experiment. For the
detailed table of results, we refer the reader to the appendix B.

10 20 50 100
G

0

500

1000

1500

2000

2500

3000
Time (s)

step
Zhang time (s)
Thresholding time(s)
BackDisc W time(s)
BackDisc H time(s)

10 20 50 100
G

0.00

0.05

0.10

0.15

0.20

0.25
Sparsity

step
Original Spars(%)
Thresholding Spars(%)
BackDisc Spars(%)

10 20 50 100
G

0.0

0.2

0.4

0.6

0.8

1.0
Error

step
PCA Err(%)
Zhang Err(%)
Thresholding Err(%)
BackDisc Err(%)

Figure 6.1: Results showing time, sparsity, and reconstruction error of the
tests across the 31 instances. In our test, we compare the PCA lower bound
in blue, the gradient descent approach described in (ZHANG et al., 2007) and
implemented by (ZITNIK; ZUPAN, 2012) in yellow, the thresholding with the
minimum reconstruction error found in red, and our backtracking discretization
algorithm(BackDisc) in green. The main result is that we can discretize the
matrices while maintaining the reconstruction error at the same level as the
gradient descent approach; the alternative was to threshold matrices with a
significant loss.

However, when comparing the error, we first notice that the lower bound
set by the principal component analysis (PCA) is very low, even with a very

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 81

low rank of G = 10, for instance. This shows that the data has some inherent
low-rank structure. The error of the gradient descent method is around 50%,
that arises to 90% when thresholded and then recovered back to 50% using
our approach.

Instances have tens of thousands of rows; for each instance, the time
for reconstructing W has to solve tens of thousands of discrete basis problems.
Even though, for ranks G ∈ {10, 20}, time was under 600 seconds (10 minutes)
for all instances, and for ranks of G = 50, our algorithm ran under 3000 seconds
(50 minutes).

6.3
Topic modelling

A common kind in statistical text mining is encoding documents as bag-
of-words (BoW). Bag-of words encoding amounts to determining a shared
vocabulary by the documents, excluding rare words and too frequent words
(such as prepositions, conjunctions). The basic idea is to select words that
encode in their presence a topic in the document. So the basic supposition
is that similar words used in documents could cluster under the same topic
(GRIFFITHS; STEYVERS, 2004).

Often authors pre-process the words by using just the radical of the
words, in a process frequently called stemming or lemmatization (YOGISH;
MANJUNATH; HEGADI, 2019). This procedure guarantees that the presence
of words with the same radical is counted as the same. Our basic pre-processing
was removing stop-words using a list of stop-words in English given by the
Python’s package NLTK, then removing words that appeared in more than
20% of the documents. Then the basic pre-processing step was to stem all
words in documents using the Porter Stemmer (RIJSBERGEN; ROBERTSON;
PORTER, 1980).

The datasets used are all available in Python’s Natural Language Toolkit
(NLTK) package (BIRD; KLEIN; LOPER, 2009). They are:

– abc Australian Broadcasting Commission 2006, containing news articles
(COMMISSION, 2010)

– brown Brown Corpus (FRANCIS; KUCERA, 1979)

– gutenberg Project Gutenberg (HART, 2004)

– inaugural US presidential inaugural speeches (PRESIDENTS, 1789-
2009)

– movie_reviews Sentiment data mining (PANG; LEE, 2004)

– reuters Reuters financial service articles (WILLIAMS; CALVO, 2003)

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 82

– webtext Diversed contemporary text genres scraped from the internet
(VARIOUS, 2005).

As with the gene expression dataset, we used the rank G of the factor-
ization as a comparison parameter. However, two parameters greatly affect the
size and sparseness of the matrices in the Natural Language process setting.

The first one is the size of the vocabulary. We begin adding words from
the most to the least frequent until we arrive at a desired number of features
we deem sufficient for grouping texts. Increasing too much the size of the
vocabulary adds words which are absent from most documents. Later that
translates to very sparse columns in the matrix. These very sparse columns
do not add grouping information to their problem. We tested two vocabulary
sizes: 100 and 300.

The second parameter is the length of the document. Short documents,
when pre-processed, have a great chance of not containing any of the selected
words for the vocabulary of the corpus. Thus, we tested the approach also
filtering documents of paragraphs too short. Our tests were with no filtering
and filtering out documents with less than 100 words.

Therefore, we have three parameters, and we will observe how they affect
processing time, reconstruction sparsity, and reconstruction error individually.
The full table of results is presented in the appendix B. Here, we present some
summary charts of the results.

First, we present the time results, then the sparsity results, and finally,
the reconstruction error results. Each of these charts is broken by the main
pre-processing premises in order to show the effect of our assumptions on the
final result. We compare differences in time, sparsity, and error by the rank
of the factorization, size of the vocabulary (max_features), and length of the
documents(min_word_count).

10 50
G

0

50

100

150

200

Time (s)

100 300
max_features

0

50

100

150

200

Time (s)

0 100
min_word_count

0

50

100

150

200

Time (s)

step
Zhang time (s)
Thresholding time(s)
BackDisc W time(s)
BackDisc H time(s)

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 83

The instances we used in this domain ultimately produced matrices with
100 or 300 columns depending on the vocabulary size and rows ranging from
hundreds to a few tens of thousands. Even working with large matrices, all
instances took in the W matrix post-processing less than 35 seconds, most in
just one second. So, despite the large number of rows, the procedure was able
to finish early.

10 50
G

0

2

4

6

8

10

12

14

16
Sparsity

100 300
max_features

0

2

4

6

8

10

12

14

16
Sparsity

0 100
min_word_count

0

2

4

6

8

10

12

14

16
Sparsity

step
Original Spars(%)
Thresholding Spars(%)
BackDisc Spars(%)

We observe that the original instances are very sparse. Our pre-processing
did not allow for stop-words or words that appeared in more than 20% of
documents. In the cases where we tested a vocabulary of 100 words, the sparsity
varied around 15%. However, in tests with more words, the matrices tend to
have an increase in sparseness that negatively affect the error recovery.

Again, just as in the gene expression domain, the thresholding procedure
tends to further exaggerate fixating entries to zero. Since the reconstruction
possesses significantly more entries equal to zero than the original, we can
explain the loss in reconstruction error.

10 50
G

20

40

60

80

100
Error

100 300
max_features

20

40

60

80

100
Error

0 100
min_word_count

20

40

60

80

100
Error

step
PCA Err(%)
Zhang Err(%)
Thresholding Err(%)
BackDisc Err(%)

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 84

The principal component analysis bound is very high for the test with a
low rank of 10, of a level around 80%. When we allow for a higher rank of 50, the
PCA lower bound still varies between 20% to 60%. This means that these cases
do not have a proper low-rank structure, even if the entries could assume any
value. Zhang et al. (ZHANG et al., 2007) gradient descent algorithm achieves
decompositions with an error above 70% on most instances; the thresholding
approach almost always deteriorates the solution to error levels in around 90%.
Our approach recuperated reestablishing previous levels, such as obtained by
the gradient descent, with the benefit of delivering truly binary matrices.

An interesting note is that in very few instances, our approach was
even better than the gradient descent method, even when navigating a more
constrained decision space. Although counter-intuitive, the problem is bi-
linear, so there must be many local optima in which the gradient-descent
approaches get paralyzed during their descent. Our approach, in a few cases,
was able to find better solutions.

6.4
Recommendation Systems

The last application domain we tested was recommendation systems.
Since the Netflix prize, one very popular approach was to use matrix factor-
ization as a subroutine for matrix completion (KOREN; BELL; VOLINSKY,
2009). Matrices represent in their rows their users and in their columns some
features of their behavior in the specific dataset. Some standard features are
product visualization, stars for a product review, or simply the purchase/con-
sumption of a specific item.

We chose datasets with various use cases and kinds of features. The
datasets are:

– delicious contacts and tags (CANTADOR; BRUSILOVSKY; KUFLIK,
2011), in which we tested both the connection from user to user, which
are friends, and the connection from user to bookmarks.

– movie lens 2k (CANTADOR; BRUSILOVSKY; KUFLIK, 2011), which
has approximately two thousand users, which gives ratings as they wish
to ten thousand movies.

– netflix (BENNETT; LANNING et al., 2007), which also is a dataset of
ratings users give to movies.

– Steam purchases (STEAM. . . ,), which we pre-processed to link users to
the games they bought respectively.

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 85

We took the same intuition we had when analyzing text data. There
are many items that are consumed by everybody, and also, there are super
consumers who consume a vast amount of the items considered. Concurrently,
there are also many items that only a few consumers use and many consumers
that do not interact often enough with a base to have a minimal trace of
behavior. These aspects translate to dense and sparse rows and columns that
do not contribute to define differentiate users amongst themselves of catalog
items amongst themselves.

So, we designed a pre-processing that removed columns or rows with
more than 90 percent of the entries equal to one, as well as removed columns
and rows that were too sparse, with too many entries equal to zero. Even when
testing different values for the cutoff percentile, matrices were often too small,
or they did not have a pattern perceptible even for a broader decomposition
such as the principal component analysis. This approach for controlling the
sparsity and size of these matrices is inspired by Diop et al. (DIOP et al.,
2019).

Therefore, we selected for factorization datasets and the sparseness
controlling pre-processing in which the lower bound on the reconstruction given
by the PCA was below 50%. In these test cases, we knew there was minimal
room for both gradient descent factorization and our post-processing approach
to capture some structure in data. Otherwise, if we tested in cases too sparse
or too dense with the PCA error above 50%, we would not even hope for a
more constrained setting such as the BMF to capture any structure.

We show the test cases in the table below.

Original Test/Filter PCA Zhang Thresholding BackDisc
Instance rows cols Sp Perc. rows cols Sp G Err time Err time Sp Err W time H time Sp Err

(#) (#) (%) (%) (#) (#) (%) (%) (s) (%) (s) (%) (%) (s) (s) (%) (%)

delicious_contacts 1861 1861 0 50 700 881 1 100 23 18 62 0 0 78 0 0 1 69
delicious_contacts 1861 1861 0 55 520 728 2 100 17 13 58 0 1 75 0 0 1 66
delicious_tags 69223 1867 0 60 17188 746 0 100 48 238 76 0 0 96 3 0 0 97
delicious_tags 69223 1867 0 65 16174 652 0 100 46 180 75 0 0 96 3 0 0 97
delicious_tags 69223 1867 0 70 12076 559 0 100 40 130 72 0 0 95 2 0 0 97
ml_2k 10109 2113 4 75 1722 516 13 100 46 31 76 0 3 94 4 0 4 88
Netflix 480189 17770 1 95 654 863 57 100 43 30 50 0 31 91 29758 89044 44 78
steam_purchases 12393 5155 0 50 5855 2470 0 100 42 246 75 0 0 85 229 0 0 79
steam_purchases 12393 5155 0 70 3344 1490 1 100 39 97 73 0 0 84 321 0 0 77
steam_purchases 12393 5155 0 90 963 513 9 100 27 17 64 0 4 80 179 0 5 71

It is possible to notice the same patterns as before in terms of in-
creased loss using thresholding that can be partially recovered using our post-
processing. What stood out in analyzing these instances is that in cases where
sparsity was still low after pre-processing, our algorithms could not recover the
error. However, in cases where the sparsity was at least above 1%, we could
recover some.

In special the Netflix case, it was only after removing 95% of the sparsest
columns and rows amount of original rows and columns that we found a case in

Chapter 6. Other applications: Gene Expression, Topic Modelling,
Recommendation Systems 86

which the PCA bound was at a promising level. However, the matrix was tiny
and dense compared to other tests. Ultimately, our algorithm took less than
two days to finish its post-processing. We wonder if that significant increase
in process time is due to the density. Maybe denser matrices create difficult
possible allocations onto sets internally, meaning a vast combinatorial space.

7
Discussion

7.1
Summary of results

There are many formulations for factorizing binary matrices. Many
variant problems are also classified as binary matrix factorization or boolean
matrix factorization. Related works use continuous values but with entries
near zero or one. Other approaches deal with rank-one factorizations exactly,
and some approaches are specialized for the symmetric case of Binary matrix
factorization.

There are also different requisites on which aspects a factorization should
prioritize for different use cases. Users must be aware of the trade-off between
accuracy, scalability and explainability. Our approach was to create a method
to adapt the result from continuous algorithms that scale well but faced until
now a great loss in accuracy when discretizing.

A continuous near-binary answer is only a little use in some practical
cases. If the model is not discrete, it is impossible to work with subsets of
items or relationships encoded in the matrix’s boolean entries. Discretization is
a necessary step to make the model useful. We showed that the discretization is
not a trivial step and can be done in a way that preserves the model’s accuracy
within a reasonable time for factorizations up to rank G = 50.

We also presented a much-needed comparison of reconstruction ap-
proaches when calculating the error of a factorization. We showed that the
reconstruction using the boolean matrix multiplication masks the problem of
overcovering because it aggregates different rank-one matrices produced by the
outer product of columns and rows with the OR function, as opposed to the
simple summation.

By using regular matrix multiplication, we have the additional benefit
of using the same error metric for both continuous and binary matrices,
besides penalizing overcovering and the effect of producing mutually exclusive
components, or at least with minimal overlap. We proved that the error
calculated by the boolean matrix multiplication is always lower than the error
calculated using the regular matrix multiplication. So, when we compared
the reconstruction error in the application, we also used the regular matrix
multiplication when compared with other algorithms.

We tested our proposed BackDisc pipeline in many different settings.

Chapter 7. Discussion 88

We began with three small synthetic examples in chapter 4. We showed
that our approach is able to recover the original matrix with a reasonable
error compared to the ideal factorization. Our approach is perturbed by the
randomness and local optima found by the gradient descent convergence. When
compared to other greedy constructive heuristics, we showed that they tend
to ignore large parts of secondary components or sometimes tend to overcover
unnecessarily.

In chapter 5.1.1, we presented many quantifiable comparisons and our
proposed Gantt pipeline for using the Binary Matrix Factorization for process
discovery.

First, we compared the time of the BackDisc pipeline using the discretiza-
tion through a formulation in a modern MIP solver and through our proposed
backtracking algorithm. Our proposed backtracking algorithm produced the
same factorization within seconds compared to the formulation.

We also compared the error obtained by our BackDisc pipeline (regardless
of the discretization methodology) to other algorithms that produce factoriza-
tions heuristically. Their error was worse in almost all instances, but inter-
estingly, the factorization error produced by the greedy constructive heuristics
worsened with larger ranks G. This effect is a sign that the greedy constructive
heuristics cannot manage how much to capture in each component planning
to balance the workload between components.

Finally, we obtained a high-level representation of the process for oper-
ating the valves in a petrochemical batch process. We segmented one year of
operation in two refineries into production cycles and analyzed their similar-
ities. We consequently obtained cohesive time periods in which the processes
were similar using the principal component analysis, polynomial filtering, and
a heuristic for segmenting time periods. We confirmed with the refinery per-
sonnel that the process in refinery 1 usually takes 48 hours, and the process in
refinery 2 takes 36 hours.

The selection of cohesive time periods made it possible to obtain segments
of the original matrix in which the clusterability (the lower bound error score
from reconstructing with the PCA) was lower than the original instance. It
also allowed us to run the discretization using the formulation in a MIP solver,
which took some minutes even within the selected time period.

The BMF over these time periods did not always produce compelling
representations. However, in some cases, it was possible to observe balanced
groups of valves and trace parallelism of two different pairs of drums of
refinery 1, whose operations are phased to each other to balance the operator’s
workload. The algorithm could capture this behavior in some of the time

Chapter 7. Discussion 89

periods of refinery 1. We later confirmed this parallel behavior in the real
setting.

In chapter 6, we gathered four direct use cases of binary matrix factor-
ization. First, we applied our BackDisc pipeline to datasets used in papers
that proposed the heuristic approaches GreConD and TopFiberM. We had to
re-run their tests using their code found on the R package rBMF (DESOUKI,
2021) to measure the results using the reconstruction with the regular matrix
multiplication. Just as expected, their results had a very high error rate. In the
specific instance PAleo, the PCA lower bound was also high, indicating low
clusterability; only in this case did GreConD produce a better result than our
proposed BackDisc pipeline, even though both error levels were above 80%.

In the following direct applications, we wanted to show some range. We
presented three additional domains where Binary Matrix Factorization can
be directly used. First, we took inspiration from the following paper from
(ZHANG et al., 2010) and apply to gene expression in larger instances than
they did. We applied our BackDisc pipeline to 31 datasets from the Gene
Expression Omnibus database. Our BackDisc pipeline was able to recover the
error loss in the thresholding step with greater success than expected.

In some cases, after discretizing with our BackDisc pipeline, the error was
lower than the error with the continuous factorization proposed in (ZHANG
et al., 2007). This even lower level of error indicates that the gradient descent
approach gets trapped too early in local optima because it is expected for it to
perform better. After all, the continuous space contains (is less constrained)
than the binary space.

The other two cases had different characteristics, the unbalanced sparse-
ness of columns and rows. In both the topic modeling tests and the recommen-
dation tests, we had to control somehow the sparsity of the problem or test
with different sparsities. A too sparse instance often means a sparse relation-
ship graph and nodes that do not belong to clusters. In the topic modeling tests,
the sparsity was too high, even working with the 300 most used words, aside
from typical stopwords such as prepositions and conjunctions. That means that
the use of words in different documents has a great variability.

However, in the topic modeling case, specifically for cases where we used a
vocabulary of only 100 words and a G of 50 (in both cases with or without short
documents), our BackDisc pipeline could get close to an error level of 60%. This
happened because it allowed for capturing pairs of words that determined the
topics of texts.

Also, in the recommendation case, we observed the effect of super-users
and super-items alongside users and items with very few interactions. These

Chapter 7. Discussion 90

instances have the characteristic of missing data. That means what the user
has watched/consumed is not indicative of the totality of what she would have
consumed if we gave them time. Thus, it might not encode user preferences in
a homogenous manner for all users.

Thus, both in topic modeling and in the recommendation, the PCA lower-
bound was high, indicating that they have low clusterability. In many cases,
we observed a recovery of at least 20p.p.% of the error. Our best explanation
for that is that the sparsity profile is also recovered. The thresholding step
typically produces less error with a more sparse choice. Nevertheless, in some
cases, the sparsity goes to near zero with the thresholding. In these cases, the
sparsity profile is not recovered.

7.2
Strengths and Weaknesses of this approach

Our work’s main strength is unifying the accuracy and scalability of
continuous methods to the explainability that true binary decompositions have.
We were able to demonstrate the possibility of recovering the error that the
thresholding step produces.

We also proposed a more robust way of measuring the error of the binary
matrix factorization. The reconstruction using regular matrix multiplication
allows us to compare the binary matrix factorization to other factorizations,
which often are continuous. Also, using the PCA error as a lower bound, we
can measure how much loss to expect when compressed to a given rank because
different use cases have different natural clusterability.

The main shortcoming of our approach is the dependence on the previous
steps of the pipeline prior to our proposed BackDisc discretization. It is tied
to the randomness of the alternating least squares gradient descent and its
susceptibility to local optima and also to the sparsity profile achieved by
thresholding.

Something we have not experienced within our proposed BackDisc
pipeline was the control of the sparsity during the thresholding search. Maybe
we could generate a better final answer with a worse result in the thresholding
procedure.

Furthermore, our approach does not attend to the choice of rank G. Some
previous works such as (MIETTINEN; VREEKEN, 2014) discuss a way to find
good values that balance the trade-off of choosing too few and not describing
well the given matrix or too many producing marginal gains in description or,
worse, overlapping components.

Chapter 7. Discussion 91

7.3
Future Work

As emphasized in the previous section, we presented a constructive
heuristic step that post-processes a real-values near binary matrix. The natural
ways to expand the work is to add steps to the pipeline or change some premises
of the discretization we proposed.

First, we want to test other forms of finding a first approximation to one
of the decomposed matrices. We believe that gradient descent is not the only
way to do it. We could use some greedy heuristics to accomplish it or from
other methods such as K-medoid, random sampling of columns or rows.

Additionally, we believe that we can combine our constructive heuristic
with known local search, such as in (MIRISAEE; GAUSSIER; TERMIER,
2015) and (ENE et al., 2008), and test a meta-heuristic search schema to
find better solutions, such as in (LU et al., 2011), (SNÃ¡Å¡EL et al., 2007)
and (SAENKO; KOTENKO, 2014). Local search algorithms are a promising
approach to binary matrix factorization. They are scalable and can be adapted
to binary matrix factorization. We can use the results from the gradient descent
and subsequent discretization as a starting point for the local search.

Strong heuristic results open the possibility of producing upper bounds
for an exact formulation that treats the bilinearity with McCormick envelopes.
A research group from Turkey in (KOVACS; GUNLUK; HAUSER, 2021)
already proposed a column generation approach to the problem. However, we
believe there are still many ways to improve their solution algorithm using
tighter bounds, reduced cost fixation, and better heuristic column generation
strategies based on our and related works.

Also, we want to adapt our discretization approach by backtracking for
the original quadratic formulation or other formulations. We believe that the
theoretical step of describing the inclusion gain formula to the linearized case
can be adapted to the quadratic formulation or a more general weighted
approach that allows the user to tune how to balance between overcovering
and undercovering.

8
Bibliography

AALST, W. M. Van der; AALST, W. M. van der. Process discovery: An introduc-
tion. Process mining: Discovery, conformance and enhancement of busi-
ness processes, Springer, p. 125–156, 2011.

ASUNCION, A.; NEWMAN, D. UCI machine learning repository. [S.l.]: Irvine,
CA, USA, 2007.

BARIK, S.; VIKALO, H. Matrix completion and performance guarantees for
single individual haplotyping. IEEE Transactions on Signal Processing 2019,
Institute of Electrical and Electronics Engineers Inc., p. 4782–4794, 2018.

BARRETT, T. et al. Ncbi geo: archive for functional genomics data sets—update.
Nucleic acids research, Oxford University Press, v. 41, n. D1, p. D991–D995,
2012.

BELOHLAVEK, R.; OUTRATA, J.; TRNECKA, M. Impact of boolean factorization
as preprocessing methods for classification of boolean data. Annals of Mathe-
matics and Artificial Intelligence, Springer Netherlands, p. 3–22, 2014.

BELOHLAVEK, R.; OUTRATA, J.; TRNECKA, M. Toward quality assessment of
boolean matrix factorizations. Information Sciences, Elsevier, v. 459, p. 71–85,
2018.

BELOHLAVEK, R.; TRNECKA, M. From-below approximations in boolean matrix
factorization: Geometry and new algorithm. Journal of Computer and System
Sciences, Academic Press Inc., p. 1678–1697, 2013.

BELOHLAVEK, R.; TRNECKA, M. Handling noise in boolean matrix factorization.
In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence. [S.l.]: AAAI Press, 2017. p. 1433–1439.

BELOHLAVEK, R.; VYCHODIL, V. Discovery of optimal factors in binary data
via a novel method of matrix decomposition. Journal of Computer and System
Sciences, Elsevier, v. 76, n. 1, p. 3–20, 2010.

BENNETT, J.; LANNING, S. et al. The netflix prize. In: NEW YORK. Proceed-
ings of KDD cup and workshop. [S.l.], 2007. v. 2007, p. 35.

BIRD, S.; KLEIN, E.; LOPER, E. Natural language processing with Python:
analyzing text with the natural language toolkit. [S.l.]: " O’Reilly Media,
Inc.", 2009.

CANTADOR, I.; BRUSILOVSKY, P.; KUFLIK, T. 2nd workshop on information
heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings
of the 5th ACM conference on Recommender systems. New York, NY, USA:
ACM, 2011. (RecSys 2011).

Chapter 8. Bibliography 93

CHANDRAN, U. R. et al. Gene expression profiles of prostate cancer reveal
involvement of multiple molecular pathways in the metastatic process. BMC
cancer, BioMed Central, v. 7, n. 1, p. 1–21, 2007.

CHEMMALAR, S. G.; LAKSHMI, P. G. Rating prediction method for item-based
collaborative filtering recommender systems using formal concept analysis. EAI
Endorsed Transactions on Energy Web, Osterreichischen Gesellschaft fur
Politikwissenschaft, p. 1–9, 2021.

CLOUGH, E.; BARRETT, T. The gene expression omnibus database. Statistical
Genomics: Methods and Protocols, Springer, p. 93–110, 2016.

COMMISSION, A. B. ABC Corpus. 2010. Distributed with the Natural Language
Toolkit [https://www.nltk.org/nltkdata/].

COMMONS, U. W. A delayed coker unit. 2007. File: Delayed_Coker.jpg.
Disponível em: <https://upload.wikimedia.org/wikipedia/commons/
c/c1/Delayed_Coker.png>.

CORRADO, G. et al. Ptrcombiner: mining combinatorial regulation of gene
expression from post-transcriptional interaction maps. BMC Genomics, BioMed
Central Ltd., 2014.

CREIGHTON, C.; HANASH, S. Mining gene expression databases for association
rules. Bioinformatics, Oxford University Press, v. 19, n. 1, p. 79–86, 2003.

DESOUKI, A. A. rBMF: Boolean Matrix Factorization. [S.l.], 2021. R package
version 1.1. Disponível em: <https://CRAN.R-project.org/package=rBMF>.

DESOUKI, A. A.; RöDER, M.; NGOMO, A.-C. N. topfiberm: Scalable and effi-
cient boolean matrix factorization. Available at http://arxiv.org/pdf/1903.10326v1
(2019/03/06) | 9 pages, 1 Figure, 3 tables. 2019.

DILLMAN, J. F. et al. Genomic analysis of rodent pulmonary tissue following
bis-(2-chloroethyl) sulfide exposure. Chemical research in toxicology, ACS
Publications, v. 18, n. 1, p. 28–34, 2005.

DIOP, M. et al. Binary matrix factorization applied to netflix dataset analysis. In:
IFAC-PapersOnLine. [S.l.: s.n.], 2019. p. 13–17.

ECKART, C.; YOUNG, G. The approximation of one matrix by another of lower
rank. Psychometrika, Springer, v. 1, n. 3, p. 211–218, 1936.

EDGAR, R.; DOMRACHEV, M.; LASH, A. E. Gene expression omnibus: Ncbi
gene expression and hybridization array data repository. Nucleic acids research,
Oxford University Press, v. 30, n. 1, p. 207–210, 2002.

ENE, A. et al. Fast exact and heuristic methods for role minimization problems.
In: Proceedings of the 13th ACM symposium on Access control models
and technologies. [S.l.: s.n.], 2008. p. 1–10.

FRANCIS, W. N.; KUCERA, H. Brown corpus manual. Letters to the Editor,
v. 5, n. 2, p. 7, 1979.

https://upload.wikimedia.org/wikipedia/commons/c/c1/Delayed_Coker.png
https://upload.wikimedia.org/wikipedia/commons/c/c1/Delayed_Coker.png
https://CRAN.R-project.org/package=rBMF

Chapter 8. Bibliography 94

FRANK, M. et al. Mining permission request patterns from android and facebook
applications (extended author version). 2012.

GOLDEN, J.; O’MALLEY, D. Reverse annealing for nonnegative/binary matrix
factorization. Plos one, Public Library of Science San Francisco, CA USA, v. 16,
n. 1, p. e0244026, 2021.

GOLUB, G. H.; LOAN, C. F. V. Matrix computations. 4. ed. [S.l.]: JHU Press,
2012.

GRIFFITHS, T. L.; STEYVERS, M. Finding scientific topics. Proceedings of the
National academy of Sciences, National Acad Sciences, v. 101, n. suppl_1, p.
5228–5235, 2004.

GROSMAN, J. Findpapers: A tool for helping researchers who are looking
for related works. 2020. <https://github.com/jonatasgrosman/findpapers>.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2023.
Disponível em: <https://www.gurobi.com>.

HARPER, F. M.; KONSTAN, J. A. The movielens datasets: History and context.
Acm transactions on interactive intelligent systems (tiis), Acm New York,
NY, USA, v. 5, n. 4, p. 1–19, 2015.

HART, M. Project gutenberg mission statement. Project Gutenberg, 2004.

HESS, S.; MORIK, K.; PIATKOWSKI, N. The primping routine—tiling through
proximal alternating linearized minimization. Data Mining and Knowledge
Discovery, Springer Netherlands, p. 1090–1131, 2017.

HINZE, C. H. et al. Immature cell populations and an erythropoiesis gene-
expression signature in systemic juvenile idiopathic arthritis: implications for patho-
genesis. Arthritis research & therapy, Springer, v. 12, p. 1–13, 2010.

IWAKAWA, M. et al. The radiation-induced cell-death signaling pathway is acti-
vated by concurrent use of cisplatin in sequential biopsy specimens from patients
with cervical cancer. Cancer biology & therapy, Taylor & Francis, v. 6, n. 6, p.
905–911, 2007.

KOREN, Y.; BELL, R.; VOLINSKY, C. Matrix factorization techniques for recom-
mender systems. Computer, IEEE, v. 42, n. 8, p. 30–37, 2009.

KOVACS, R.; GUNLUK, O.; HAUSER, R. Low-rank boolean matrix approximation
by integer programming. arXiv preprint arXiv:1803.04825, 2018.

KOVACS, R. A.; GUNLUK, O.; HAUSER, R. A. Binary matrix factorisation via
column generation. In: Proceedings of the AAAI Conference on Artificial
Intelligence. [S.l.: s.n.], 2021. v. 35, n. 5, p. 3823–3831.

KUMAR, R. et al. Faster algorithms for binary matrix factorization. In: PMLR.
International Conference on Machine Learning. [S.l.], 2019. p. 3551–3559.

https://github.com/jonatasgrosman/findpapers
https://www.gurobi.com

Chapter 8. Bibliography 95

LABRECHE, H. G.; NEVINS, J. R.; HUANG, E. Integrating factor analysis and a
transgenic mouse model to reveal a peripheral blood predictor of breast tumors.
BMC medical genomics, BioMed Central, v. 4, n. 1, p. 1–14, 2011.

LANGE, H.; BERGéS, M. Bolt: Energy disaggregation by online binary matrix fac-
torization of current waveforms. In: Proceedings of the 3rd ACM Conference
on Systems for Energy-Efficient Built Environments, BuildSys 2016. [S.l.]:
Association for Computing Machinery, 2016. p. 11–20.

LECUN, Y. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

LEE, D. D.; SEUNG, H. S. Learning the parts of objects by non-negative matrix
factorization. Nature, Nature Publishing Group UK London, v. 401, n. 6755, p.
788–791, 1999.

LI, F. et al. Detection and identification of cyber and physical attacks on distribu-
tion power grids with pvs: An online high-dimensional data-driven approach. IEEE
Journal of Emerging and Selected Topics in Power Electronics, IEEE, v. 10,
n. 1, p. 1282–1291, 2019.

LI, F. et al. Dete ction and identification of cyber and physical attacks on
distribution power grids with pvs: An online high-dimensional data-driven approach.
IEEE Journal of Emerging and Selected Topics in Power Electronics,
Institute of Electrical and Electronics Engineers Inc., p. 1282–1291, 2022.

LIU, Y.-C.; CHENG, C.-P.; TSENG, V. S. Mining differential top-k co-expression
patterns from time course comparative gene expression datasets. BMC bioinfor-
matics, Springer, v. 14, p. 1–13, 2013.

LU, H. et al. Weighted rank-one binary matrix factorization. In: Proceedings of
the 11th SIAM International Conference on Data Mining, SDM 2011.
[S.l.: s.n.], 2011. p. 283–294.

LUCCHESE, C.; ORLANDO, S.; PEREGO, R. Mining top-k patterns from binary
datasets in presence of noise. In: SIAM. Proceedings of the 2010 SIAM
International Conference on Data Mining. [S.l.], 2010. p. 165–176.

LUCCHESE, C.; ORLANDO, S.; PEREGO, R. A unifying framework for mining
approximate top-k binary patterns. IEEE Transactions on Knowledge and
Data Engineering, IEEE, v. 26, n. 12, p. 2900–2913, 2013.

MALIK, O. A. et al. Binary matrix factorization on special purpose hardware.
PLOS ONE 16(12): e0261250, 2021, Public Library of Science, p. e0261250,
2021.

MCCORMICK, G. P. Computability of global solutions to factorable nonconvex
programs: Part i—convex underestimating problems. Mathematical program-
ming, Springer, v. 10, n. 1, p. 147–175, 1976.

MEEDS, E. et al. Modeling dyadic data with binary latent factors. Advances in
neural information processing systems, v. 19, 2006.

Chapter 8. Bibliography 96

METZELER, K. H. et al. An 86-probe-set gene-expression signature predicts
survival in cytogenetically normal acute myeloid leukemia. Blood, The Journal
of the American Society of Hematology, American Society of Hematology
Washington, DC, v. 112, n. 10, p. 4193–4201, 2008.

MEYER, L. H. et al. Early relapse in all is identified by time to leukemia in nod/scid
mice and is characterized by a gene signature involving survival pathways. Cancer
cell, Elsevier, v. 19, n. 2, p. 206–217, 2011.

MIETTINEN, P. Matrix decomposition methods for data mining: Computational
complexity and algorithms. Helsingin yliopisto, 2009.

MIETTINEN, P. et al. The discrete basis problem. IEEE transactions on
knowledge and data engineering, IEEE, v. 20, n. 10, p. 1348–1362, 2008.

MIETTINEN, P.; NEUMANN, S. Recent developments in boolean matrix factoriza-
tion. In: Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence. [S.l.: s.n.], 2021. p. 4922–4928.

MIETTINEN, P.; VREEKEN, J. Mdl4bmf: Minimum description length for boolean
matrix factorization. ACM Transactions on Knowledge Discovery from Data,
Association for Computing Machinery (ACM), p. 1–31, 2014.

MIRISAEE, H.; GAUSSIER, E.; TERMIER, A. Efficient local search for l1 and l2
binary matrix factorization. Intelligent Data Analysis, IOS Press BV, p. 783–
807, 2016.

MIRISAEE, S. H.; GAUSSIER, E.; TERMIER, A. Improved local search for binary
matrix factorization. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence. [S.l.]: AAAI Press, 2015. p. 1198–1204.

MONKS, S. et al. Genetic inheritance of gene expression in human cell lines. The
American Journal of Human Genetics, Elsevier, v. 75, n. 6, p. 1094–1105,
2004.

MORSE, C. G. et al. Hiv infection and antiretroviral therapy have divergent effects
on mitochondria in adipose tissue. Journal of Infectious Diseases, Oxford
University Press, v. 205, n. 12, p. 1778–1787, 2012.

NAIR, R. P. et al. Genome-wide scan reveals association of psoriasis with il-23 and
nf-κb pathways. Nature genetics, Nature Publishing Group US New York, v. 41,
n. 2, p. 199–204, 2009.

NOBLE, C. L. et al. Regional variation in gene expression in the healthy colon
is dysregulated in ulcerative colitis. Gut, BMJ Publishing Group, v. 57, n. 10, p.
1398–1405, 2008.

PANG, B.; LEE, L. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In: Proceedings of the ACL. [S.l.: s.n.],
2004.

PARFENOV, D. et al. Research of genetic optimization algorithms in the design
of vlan. In: 2021 29th Telecommunications Forum, TELFOR 2021 - Pro-
ceedings. [S.l.: s.n.], 2021.

Chapter 8. Bibliography 97

PARIKH, N.; BOYD, S. et al. Proximal algorithms. Foundations and trends®
in Optimization, Now Publishers, Inc., v. 1, n. 3, p. 127–239, 2014.

PARNELL, G. P. et al. Identifying key regulatory genes in the whole blood of septic
patients to monitor underlying immune dysfunctions. Shock, LWW, v. 40, n. 3,
p. 166–174, 2013.

PELLAGATTI, A. et al. Deregulated gene expression pathways in myelodysplastic
syndrome hematopoietic stem cells. Leukemia, Nature Publishing Group, v. 24,
n. 4, p. 756–764, 2010.

PFISTER, T. D. et al. Topoisomerase i levels in the nci-60 cancer cell line
panel determined by validated elisa and microarray analysis and correlation with
indenoisoquinoline sensitivity. Molecular cancer therapeutics, AACR, v. 8, n. 7,
p. 1878–1884, 2009.

PRAT, A. et al. based pam50 subtype predictor identifies higher responses and
improved survival outcomes in her2-positive breast cancer in the noah study.
Clinical Cancer Research, AACR, v. 20, n. 2, p. 511–521, 2014.

PRESIDENTS, V. U. Inaugural Address Corpus. 1789–2009. Distributed with
the Natural Language Toolkit [https://www.nltk.org/nltkdata/].

RAVANBAKHSH, S.; POCZOS, B.; GREINER, R. Boolean matrix fac-
torization and noisy completion via message passing. Available at
http://arxiv.org/pdf/1509.08535v3 (2015/09/28). 2015.

RIJSBERGEN, C. J. V.; ROBERTSON, S. E.; PORTER, M. F. New models in
probabilistic information retrieval. [S.l.]: British Library Research and Develop-
ment Department London, 1980. v. 5587.

RUKAT, T. et al. Bayesian boolean matrix factorisation. In: Proceedings of the
34th International Conference on Machine Learning - Volume 70. [S.l.]:
JMLR.org, 2017. p. 2969–2978.

SAENKO, I.; KOTENKO, I. Design of virtual local area network scheme based on
genetic optimization and visual analysis. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, Innovative Informa-
tion Science Technology Research Group (ISYOU), p. 86–102, 2014.

SAENKO, I.; KOTENKO, I. A Genetic Approach for Virtual Computer
Network Design. [S.l.]: Springer Verlag, 2015. 95-105 p.

SAENKO, I.; KOTENKO, I. Reconfiguration of Access Schemes in Virtual
Networks of the Internet of Things by Genetic Algorithms. [S.l.]: Springer
Verlag, 2016. 155-165 p.

SAVITZKY, A.; GOLAY, M. J. Smoothing and differentiation of data by simplified
least squares procedures. Analytical chemistry, ACS Publications, v. 36, n. 8, p.
1627–1639, 1964.

SAWARKAR, A. N. et al. Petroleum residue upgrading via delayed coking: A review.
The Canadian Journal of Chemical Engineering, Wiley Online Library, v. 85,
n. 1, p. 1–24, 2007.

Chapter 8. Bibliography 98

SCHENA, M. et al. Quantitative monitoring of gene expression patterns with a
complementary dna microarray. Science, American Association for the Advance-
ment of Science, v. 270, n. 5235, p. 467–470, 1995.

SCHIRMER, S. H. et al. Suppression of inflammatory signaling in monocytes
from patients with coronary artery disease. Journal of molecular and cellular
cardiology, Elsevier, v. 46, n. 2, p. 177–185, 2009.

SHAPIRA, S. D. et al. A physical and regulatory map of host-influenza interactions
reveals pathways in h1n1 infection. Cell, Elsevier, v. 139, n. 7, p. 1255–1267, 2009.

SHEN, B.-H.; JI, S.; YE, J. Mining discrete patterns via binary matrix factoriza-
tion. In: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. [S.l.: s.n.], 2009. p. 757–765.

SNÃ¡Å¡EL, V. et al. On the road to genetic boolean matrix factorization. Neural
Network World, Czech Technical University in Prague, p. 675–688, 2007.

SPIRA, A. et al. Airway epithelial gene expression in the diagnostic evaluation of
smokers with suspect lung cancer. Nature medicine, Nature Publishing Group
US New York, v. 13, n. 3, p. 361–366, 2007.

STEAM Video Games. <https://www.kaggle.com/datasets/tamber/
steam-video-games>. Accessed: 2022-10-26.

SU, A. I. et al. A gene atlas of the mouse and human protein-encoding transcrip-
tomes. Proceedings of the National Academy of Sciences, National Acad
Sciences, v. 101, n. 16, p. 6062–6067, 2004.

SUÁREZ-FARINAS, M. et al. Expanding the psoriasis disease profile: interrogation
of the skin and serum of patients with moderate-to-severe psoriasis. Journal of
Investigative Dermatology, Elsevier, v. 132, n. 11, p. 2552–2564, 2012.

SUN, L. et al. Neuronal and glioma-derived stem cell factor induces angiogenesis
within the brain. Cancer cell, Elsevier, v. 9, n. 4, p. 287–300, 2006.

TASKESEN, E. et al. Prognostic impact, concurrent genetic mutations, and gene
expression features of aml with cebpa mutations in a cohort of 1182 cytogenetically
normal aml patients: further evidence for cebpa double mutant aml as a distinctive
disease entity. Blood, The Journal of the American Society of Hematology,
American Society of Hematology Washington, DC, v. 117, n. 8, p. 2469–2475,
2011.

TIAN, E. et al. The role of the wnt-signaling antagonist dkk1 in the development
of osteolytic lesions in multiple myeloma. New England Journal of Medicine,
Mass Medical Soc, v. 349, n. 26, p. 2483–2494, 2003.

TU, S.; CHEN, R.; XU, L. A binary matrix factorization algorithm for protein
complex prediction. Proteome science, BioMed Central Ltd., 2011.

VARIOUS. Webtext Corpus. 2005. Distributed with the Natural Language
Toolkit [https://www.nltk.org/nltkdata/].

https://www.kaggle.com/datasets/tamber/steam-video-games
https://www.kaggle.com/datasets/tamber/steam-video-games

Chapter 8. Bibliography 99

VOTAVOVA, H. et al. Transcriptome alterations in maternal and fetal cells induced
by tobacco smoke. Placenta, Elsevier, v. 32, n. 10, p. 763–770, 2011.

WAN, C. et al. Fast and efficient boolean matrix factorization by geometric
segmentation. Available at http://arxiv.org/abs/1909.03991v2 (2019/09/09) |
Accepted at AAAI 2020. 2019.

WANG, J. et al. Linear Policy Recommender Scheme for Large-Scale
Attribute-Based Access Control. [S.l.]: Springer Verlag, 2022. 175-191 p.

WILLIAMS, K.; CALVO, R. A. A framework for text categorization. Tese
(Doutorado) — Citeseer, 2003.

WOLD, S.; ESBENSEN, K.; GELADI, P. Principal component analysis. Chemo-
metrics and intelligent laboratory systems, Elsevier, v. 2, n. 1-3, p. 37–52,
1987.

YOGISH, D.; MANJUNATH, T.; HEGADI, R. S. Review on natural language pro-
cessing trends and techniques using nltk. In: SPRINGER. Recent Trends in
Image Processing and Pattern Recognition: Second International Con-
ference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised
Selected Papers, Part III 2. [S.l.], 2019. p. 589–606.

ZHANG, Z. et al. Binary matrix factorization with applications. In: IEEE. Seventh
IEEE international conference on data mining (ICDM 2007). [S.l.], 2007.
p. 391–400.

ZHANG, Z.-Y.; AHN, Y.-Y. Community detection in bipartite networks using
weighted symmetric binary matrix factorization. International Journal of Mod-
ern Physics C, World Scientific Publishing Co. Pte Ltd, 2015.

ZHANG, Z.-Y. et al. Binary matrix factorization for analyzing gene expression data.
Data Mining and Knowledge Discovery, Springer, v. 20, p. 28–52, 2010.

ZHANG, Z.-Y.; WANG, Y.; AHN, Y.-Y. Overlapping community detection in
complex networks using symmetric binary matrix factorization. Physical Review
E, APS, v. 87, n. 6, p. 062803, 2013.

ZITNIK, M.; ZUPAN, B. Nimfa: A python library for nonnegative matrix factor-
ization. Journal of Machine Learning Research, v. 13, p. 849–853, 2012.

A
Gantt Charts

This appendix shows all the Gantt charts generated by the process dicovery
pipeline presented in chapter 5.1.1.

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00 day 02-18:00 day 03-00:00

G01:V04,V25,V26,V27,V30,V49,V52,V53,V56,V58,V62,V66,V70,V83,V84,V87,V94,V95

G06:V25,V26,V27,V30,V49,V56,V58,V62,V66,V70,V87,V94,V95

G04:V11,V14,V42,V47,V48,V49,V52,V57,V58,V62,V66,V70,V88,V89,V94,V95

G05:V01,V17,V18,V42,V47,V48,V49,V52,V57,V58,V62,V66,V70,V77,V78,V89,V94,V95

G11:V13,V17,V20,V34,V35,V49,V57,V59,V62,V63,V66,V67,V70,V89,V94,V96

G02:V03,V07,V15,V16,V17,V20,V36,V38,V49,V57,V59,V63,V67,V70,V73,V81,V82,V89,V94,V96

G14:V15,V16

G10:V60,V64

G08:V60,V64,V73

G09:V21,V24,V36,V37,V39,V40,V49,V56,V59,V60,V63,V64,V67,V70,V86,V87,V94,V96

G00:V02,V27,V28,V36,V39,V40,V49,V56,V59,V63,V67,V70,V79,V80,V87,V94,V96

G13:V61,V65,V73,V93

G07:V61,V65,V72,V74,V93

G03:V43,V46,V63,V67,V72,V74,V93

Open valve
group

5>4

4>1

1>6

6>0

0>9

9>12

12>9

9>2

2>11

11>5

12>2

1>3

3>0

5>10

10>8

8>10

8>9

1w 1m 6m YTD 1y all

Loading [MathJax]/extensions/MathMenu.js

Figure A.1: Gantt chart of the first cohesive time period selected of the first
refinery, comprehending 9 production cycles.

Appendix A. Gantt Charts 101

day 01-00:00

day 01-06:00

day 01-12:00

day 01-18:00

day 02-00:00

day 02-06:00

day 02-12:00

day 02-18:00

day 03-00:00

G04:V01,V49,V63,V67,V72,V74,V94

G07:V01,V49,V63,V67,V73,V74,V94

G02:V01,V36,V37,V49,V59,V63,V67,V70,V73,V94,V96

G00:V01,V36,V37,V39,V40,V49,V59,V63,V67,V70,V73,V94,V96

G08:V03,V07,V36,V38,V59,V81,V82,V93,V96

G11:V25,V26

G12:V21,V24,V25,V26

G06:V21,V24,V25,V26

G09:V01,V42,V47,V48,V49,V52,V73,V94

G13:V01,V42,V47,V49,V52,V53,V62,V66,V70,V73,V94,V95

G03:V01,V49,V52,V58,V62,V66,V70,V73,V83,V84,V93,V94,V95

G01:V46,V58,V62,V66,V70,V93,V95

G05:V34,V35,V59,V62,V66,V70,V93,V96

G14:V02,V06,V58,V62,V66,V70,V95

G10:V02,V06

X
No recurrent
activity

Open valve
group

7>13

13>9

9>3

3>7

7>4

4>7

0>2

2>7

7>2

1w 1m 6m YTD 1y all

Figure A.2: Gantt chart of the second cohesive time period selected of the first
refinery, comprehending 7 production cycles.

day 01-00:00 day 01-12:00 day 02-00:00 day 02-12:00 day 03-00:00

G09:V73

G00:V52,V56,V60,V64,V73,V86,V87

G04:V21,V24,V42,V45,V47,V48,V52,V56,V60,V61,V64,V65,V86,V87,V93

G05:V49,V58,V62,V66,V70,V94,V95

G10:V49,V58,V62,V66,V70,V94,V95

G11:V02,V06,V27,V28,V42,V47,V48,V49,V58,V62,V66,V70,V79,V80,V94,V95

G06:V27,V34,V35,V49,V56,V59,V60,V62,V63,V64,V66,V67,V70,V79,V80,V87,V93,V94,V96

G01:V25,V26,V27,V34,V35,V49,V56,V59,V60,V62,V63,V64,V66,V67,V70,V73,V87,V94,V96

G07:V03,V07,V25,V26,V27,V36,V38,V49,V56,V59,V60,V63,V64,V67,V70,V81,V82,V87,V94,V96

G12:V36,V37,V39,V40,V59,V88,V96

G03:V11,V14,V36,V37,V49,V57,V59,V60,V61,V63,V64,V65,V67,V70,V88,V89,V93,V94,V96

G14:V01,V49,V57,V61,V63,V65,V67,V70,V77,V78,V89,V94

G02:V15,V16,V17,V43,V46,V57,V61,V63,V65,V67,V89,V93

G08:V04,V15,V16,V17,V52,V53,V57,V61,V65,V73,V83,V84,V88,V89

G13:V72,V74

X
No recurrent
activity

Open valve
group

1>6

11>5

5>12

12>3

3>7

7>1

6>0

0>4

8>2

2>14

14>3

4>8

5>14

1w 1m 6m YTD 1y all

Figure A.3: Gantt chart of the third cohesive time period selected of the first
refinery, comprehending 6 production cycles.

Appendix A. Gantt Charts 102

day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00 day 02-18:00 day 03-00:00

G02:V11,V14,V37,V60,V64

G00:V02,V27,V42,V47,V49,V56,V60,V62,V64,V66,V70,V79,V80,V87,V94

G07:V42,V47,V48,V49,V52,V56,V60,V62,V64,V66,V70,V87,V94

G06:V21,V24,V49,V56,V58,V60,V61,V62,V64,V65,V66,V70,V86,V87,V94,V95

G03:V04,V49,V52,V53,V57,V58,V61,V62,V65,V66,V70,V83,V84,V89,V94,V95

G09:V36,V39,V40,V49,V57,V61,V63,V65,V67,V70,V88,V89,V94,V96

G13:V01,V17,V36,V37,V39,V40,V49,V57,V61,V63,V65,V67,V70,V73,V77,V78,V89,V94,V96

G05:V12,V13,V43,V46,V49,V57,V61,V62,V63,V65,V66,V67,V70,V77,V78,V89,V94,V95

G11:V03,V25,V26,V27,V30,V36,V38,V49,V56,V60,V63,V64,V67,V70,V73,V81,V82,V87,V94,V96

G14:V25,V26,V27,V30,V49,V56,V60,V62,V63,V64,V66,V67,V70,V73,V87,V94,V96

G04:V22,V23,V34,V35,V72,V74,V79,V80,V93

G12:V72,V74,V93

G08:V52,V58,V73,V95

G01:V20,V58

G10:V15,V16,V17,V20,V73

X
No recurrent
activity

Open valve
group

11>14

14>0

0>6

6>3

3>5

5>13

13>9

9>11

14>8

8>6

13>2

2>11

1w 1m 6m YTD 1y all

Figure A.4: Gantt chart of the fourth cohesive time period selected of the first
refinery, comprehending 6 production cycles.

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00 day 02-18:00 day 03-00:00

G00:V21,V24,V42,V47,V48,V49,V52,V56,V58,V60,V61,V62,V64,V65,V66,V70,V86,V87,V94,V95

G13:V02,V27,V42,V47,V48,V49,V52,V56,V58,V60,V62,V64,V66,V70,V79,V80,V86,V87,V94,V95

G12:V27,V30,V34,V35,V49,V56,V62,V63,V66,V67,V70,V79,V80,V87,V94

G02:V03,V27,V30,V36,V38,V49,V56,V59,V60,V63,V64,V67,V70,V81,V82,V87,V94,V96

G04:V03,V27,V36,V49,V56,V59,V60,V63,V64,V67,V70,V81,V82,V87,V94,V96

G06:V73

G14:V25,V26,V73

G03:V01,V36,V39,V40,V59,V73,V77,V78,V96

G05:V59,V60,V64,V74,V96

G01:V72,V74,V93

G10:V11,V14,V37,V49,V57,V61,V63,V65,V67,V70,V72,V88,V89,V93,V94

G09:V17,V37,V49,V57,V61,V63,V65,V67,V70,V88,V89,V94

G07:V15,V16,V17,V20,V43,V46,V49,V57,V58,V61,V62,V63,V65,V66,V67,V70,V89,V93,V94,V95

G08:V04,V15,V16,V17,V20,V49,V52,V53,V57,V58,V61,V62,V65,V66,V70,V83,V84,V89,V94,V95

G11:V13,V58,V62,V66,V72,V74,V77,V78,V95

Open valve
group

12>13

13>0

0>8

8>7

7>9

9>7

9>10

10>9

4>2

2>12

10>4

7>10

5>13

7>11

11>7

11>3

3>5

5>4

1w 1m 6m YTD 1y all

Figure A.5: Gantt chart of the fifth cohesive time period selected of the first
refinery, comprehending 15 production cycles.

Appendix A. Gantt Charts 103

day 01-00:00 day 01-12:00 day 02-00:00 day 02-12:00 day 03-00:00

G02:V74

G14:V49,V60,V62,V64,V66,V70,V72,V74,V93,V94

G13:V49,V56,V60,V62,V64,V66,V70,V74,V86,V87,V94

G10:V48,V49,V56,V60,V62,V64,V66,V70,V86,V87,V94

G06:V25,V26,V27,V30,V34,V35,V49,V56,V60,V62,V64,V66,V70,V87,V94

G03:V15,V16,V17,V20,V49,V57,V62,V66,V73,V89,V94

G08:V01,V49,V57,V61,V63,V65,V67,V70,V73,V77,V78,V89,V94

G11:V59,V63,V67,V96

G05:V36,V37,V39,V40,V59,V88,V96

G01:V03,V25,V26,V27,V30,V36,V49,V56,V59,V60,V63,V64,V67,V70,V73,V81,V82,V87,V94,V96

G07:V14,V36,V37,V49,V57,V60,V61,V63,V64,V65,V67,V70,V72,V74,V81,V82,V88,V89,V93,V94

G09:V43,V46,V49,V57,V58,V61,V62,V63,V65,V66,V67,V70,V89,V90,V93,V94,V95

G04:V04,V08,V52,V58,V61,V65,V70,V83,V84,V90,V95

G12:V21,V24,V42,V47,V52,V58,V61,V65,V72,V95

G00:V02,V27,V42,V47,V52,V58,V73,V79,V80,V95

X
No recurrent
activity

Open valve
group

11>0

0>12

12>4

4>9

9>8

8>7

7>1

1>11

6>14

14>10

10>13

3>9

1>6

13>10

1w 1m 6m YTD 1y all

Figure A.6: Gantt chart of the sixth cohesive time period selected of the first
refinery, comprehending 7 production cycles.

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00

G12:V01,V02,V03,V05,V41,V43,V45,V47,V49

G07:V01,V02,V12,V13,V39,V41,V43,V45,V47

G04:V01,V02,V08,V43,V47

G06:V01,V02,V08,V21,V22,V27,V44,V48

G03:V01,V02,V18,V19,V27,V28,V29,V40,V41,V44,V45,V48

G11:V01,V02,V27,V28,V29,V41,V45

G02:V20,V23,V36

G08:V31,V35,V36,V38,V39,V42,V46

G00:V16,V17,V31,V35,V36,V38,V39,V42,V46

G05:V44,V48

G01:V40,V42,V44,V46,V48

G10:V06,V07,V14,V38,V40,V42,V46

G09:V14,V32,V37,V52

G13:V14,V37

G14:V09,V11,V37,V42,V50

Open valve
group

4>8

8>7

7>3

3>11

11>6

6>4

4>12

12>7

1w 1m 6m YTD 1y all

Figure A.7: Gantt chart of the first cohesive time period selected of the second
refinery, comprehending 8 production cycles.

Appendix A. Gantt Charts 104

day 01-12:00 day 01-15:00 day 01-18:00 day 01-21:00 day 02-00:00 day 02-03:00 day 02-06:00 day 02-09:00

G05:V01,V02,V12,V13,V14,V20,V23,V37,V39,V43,V47

G06:V01,V02,V12,V13,V14,V32,V37,V39,V41,V44,V45,V48,V52

G09:V01,V02,V14,V27,V28,V29,V37,V40,V41,V44,V45,V48

G04:V01,V02,V14,V27,V28,V29,V37,V40,V41,V44,V45,V48

G07:V36,V41,V45

G01:V03,V05,V31,V35,V36,V39,V41,V45,V49

G12:V08,V16,V17,V31,V35,V36,V39

G02:V06,V07,V08,V25,V26,V40,V44,V48,V51

G10:V06,V07,V08,V21,V22,V27,V40,V44,V48

G11:V43,V47

G14:V43,V47

G13:V09,V11,V42,V46,V50

G03:V01,V02,V14,V38,V42,V46

G00:V01,V02,V14,V38,V42,V46

G08:V18,V19

X
No recurrent
activity

0>5

5>6

6>4

4>0

1w 1m 6m YTD 1y all

Figure A.8: Gantt chart of the second cohesive time period selected of the
second refinery, comprehending 13 production cycles.

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00

G13:V08,V16,V17

G14:V01,V02,V06,V07,V08,V14,V21,V22,V27,V38,V40,V42,V46

G00:V01,V02,V06,V07,V08,V14,V38,V40,V42,V46

G09:V01,V02,V06,V07,V08,V14,V25,V26,V38,V40,V42,V43,V46,V47,V51

G12:V01,V02,V14,V31,V35,V36,V38,V39,V42,V43,V46,V47

G02:V01,V02,V14,V31,V35,V36,V38,V39,V42,V43,V46,V47

G05:V01,V02,V12,V13,V14,V32,V37,V39,V41,V43,V45,V47,V52

G10:V01,V02,V12,V13,V14,V20,V23,V36,V37,V39,V41,V43,V45,V47

G11:V41,V45

G06:V01,V02,V14,V18,V19,V27,V28,V29,V37,V40,V41,V45

G01:V01,V02,V14,V27,V28,V29,V37,V40,V41,V45

G08:V09,V11,V42,V44,V46,V48,V50

G03:V44,V48

G04:V44,V48

G07:-

X
No recurrent
activity

Open valve
group

9>0

0>2

2>10

10>5

5>6

6>1

1>14

14>9

9>2

1w 1m 6m YTD 1y all

Figure A.9: Gantt chart of the third cohesive time period selected of the second
refinery, comprehending 23 production cycles.

Appendix A. Gantt Charts 105

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00

G00:V14,V37,V41,V45

G01:V01,V02,V12,V13,V14,V36,V37,V39,V41,V43,V45,V47

G12:V01,V02,V14,V36,V39,V41,V43,V45,V47

G04:V01,V02,V08,V14,V16,V17,V36,V39,V43,V47

G14:V06,V07,V08,V14,V21,V22,V38

G10:V06,V07,V08,V14,V38

G02:V03,V05,V31,V35,V38,V42,V46,V49

G05:V31,V35,V38,V42,V46

G11:V20,V23,V37

G03:V01,V02,V25,V26,V40,V42,V43,V44,V46,V47,V48,V51

G13:V01,V02,V27,V40,V42,V44,V46,V48

G08:V01,V02,V09,V11,V27,V28,V29,V40,V42,V44,V46,V48,V50

G07:V01,V02,V18,V19,V27,V28,V29,V40,V44,V48

G06:V01,V02,V14,V18,V19,V27,V28,V29,V37,V40,V41,V44,V45,V48

G09:V32,V34,V44,V48,V52

X
No recurrent
activity

Open valve
group

1w 1m 6m YTD 1y all

Figure A.10: Gantt chart of the fourth cohesive time period selected of the
second refinery, comprehending 40 production cycles.

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00

G07:V21,V22,V27

G03:V01,V02,V09,V11,V27,V28,V29,V37,V40,V41,V42,V44,V45,V46,V48,V50

G06:V01,V02,V14,V18,V19,V27,V28,V29,V37,V40,V41,V44,V45,V48

G10:V01,V02,V10,V14,V18,V19,V27,V28,V29,V37,V40,V41,V44,V45,V48

G00:V12,V13,V14,V37,V41,V45

G04:V12,V13,V14,V20,V23,V36,V37,V41,V45

G14:V08,V16,V17,V31,V35

G08:V01,V02,V03,V05,V31,V35,V36,V39,V41,V42,V43,V45,V46,V47,V49

G11:V01,V02,V39,V43,V47

G01:V01,V02,V36,V39,V42,V43,V46,V47

G13:V04,V06,V38

G12:V25,V26,V43,V47,V51

G05:V01,V02,V06,V07,V08,V40,V42,V44,V46,V48

G02:V01,V02,V06,V07,V08,V40,V42,V44,V46,V48

G09:V32,V34,V44,V48,V52

X
No recurrent
activity

Open valve
group

1w 1m 6m YTD 1y all

Figure A.11: Gantt chart of the fifth cohesive time period selected of the second
refinery, comprehending 47 production cycles.

Appendix A. Gantt Charts 106

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00

G04:V07,V40,V46

G08:V27,V40

G05:V01,V02,V04,V09,V11,V27,V28,V29,V37,V40,V41,V42,V44,V45,V46,V48,V50

G01:V01,V02,V04,V14,V18,V19,V27,V28,V29,V37,V40,V41,V44,V45,V48

G13:V01,V02,V04,V14,V37,V41,V44,V45,V48

G12:V01,V02,V04,V14,V36,V37

G09:V08,V16,V17,V39

G03:V12,V13,V32,V34,V39,V43,V47,V52

G11:V12,V13,V20,V23,V39,V41,V43,V45,V47

G10:V03,V05,V31,V35,V39,V41,V45,V49

G02:V01,V02,V04,V31,V35,V36,V38,V42,V43,V46,V47

G14:V01,V02,V04,V36,V38,V42,V43,V46,V47

G07:V01,V02,V04,V06,V08,V25,V26,V38,V42,V43,V44,V47,V48,V51

G06:V01,V02,V04,V06,V08,V21,V22,V27,V38,V42,V44,V48

G00:V06

X
No recurrent
activity

Open valve
group

7>14

14>2

2>14

14>12

12>13

13>1

1>5

6>7

2>12

5>6

14>11

11>3

3>1

2>11

11>13

12>3

1w 1m 6m YTD 1y all

Figure A.12: Gantt chart of the sixth cohesive time period selected of the
second refinery, comprehending 20 production cycles.

day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00

G10:V01,V02,V28,V29,V40,V44,V48

G11:V01,V02,V40,V44,V48

G02:V01,V02,V07,V08,V21,V22,V27,V38,V40,V44,V48

G09:V08,V38

G06:V06,V07,V25,V26,V42,V43,V46,V47,V51

G13:V06,V42,V46

G12:V31,V35,V38,V42,V46

G00:V01,V02,V06,V16,V17,V31,V35,V36,V39,V42,V43,V46,V47

G05:V01,V02,V06,V14,V20,V23,V36,V37,V39,V41,V43,V45,V47

G01:V01,V02,V06,V14,V32,V34,V37,V39,V41,V43,V44,V45,V47,V48,V52

G07:V01,V02,V03,V05,V06,V36,V39,V41,V43,V45,V47,V49

G03:V01,V02,V06,V14,V36,V37,V39,V41,V43,V45,V47

G08:V06,V14,V18,V19,V27,V37,V41,V45

G04:V09,V11,V27,V37,V41,V45,V50

G14:V12,V13

X
No recurrent
activity

6>0

0>7

7>3

3>5

5>1

1>8

8>4

4>2

2>6

8>13

13>6

1w 1m 6m YTD 1y all

Figure A.13: Gantt chart of the seventh cohesive time period selected of the
second refinery, comprehending 6 production cycles.

Appendix A. Gantt Charts 107

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00

G09:V44,V48

G12:V44,V48

G08:V01,V02,V03,V05,V31,V35,V36,V38,V39,V42,V43,V46,V47,V49

G13:V01,V02,V08,V16,V17,V31,V35,V36,V38,V39,V42,V43,V46,V47

G10:V01,V02,V06,V07,V08,V25,V26,V38,V40,V42,V43,V46,V47,V51

G04:V01,V02,V06,V07,V08,V21,V22,V27,V38,V40,V42,V46

G14:V01,V02,V27,V28,V29,V37,V40,V44,V48

G02:V01,V02,V06,V14,V18,V19,V27,V28,V29,V37,V40,V41,V45

G05:V01,V02,V06,V12,V13,V14,V32,V34,V37,V39,V41,V43,V45,V47,V52

G07:V01,V02,V12,V13,V14,V20,V23,V36,V39,V43,V47

G03:V01,V02,V06,V12,V13,V14,V43,V47

G00:V06

G06:V06,V41,V45

G11:V37,V41,V45

G01:V06,V09,V11,V41,V42,V45,V46,V50

X
No recurrent
activity

Open valve
group

10>13

13>8

8>7

7>5

5>2

2>14

14>4

4>10

5>3

3>2

1w 1m 6m YTD 1y all

Figure A.14: Gantt chart of the eighth cohesive time period selected of the
second refinery, comprehending 28 production cycles.

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00

G06:V21,V22,V27

G00:V32,V34,V37,V41,V45,V52

G10:V28,V29,V37,V41,V45

G02:V27,V29,V37,V41,V45

G12:V37,V41,V45

G03:V03,V05,V36,V39,V41,V43,V45,V47,V49

G11:V25,V26,V43,V47,V51

G01:V08,V16,V17,V36,V39,V43,V47

G09:V01,V02,V12,V13,V14,V20,V23,V36,V39,V43,V47

G04:V01,V02,V12,V13,V14,V39,V43,V44,V47,V48

G05:V01,V02,V14,V18,V19,V27,V40,V44,V48

G08:V01,V02,V09,V11,V28,V40,V42,V44,V46,V48,V50

G13:V01,V02,V06,V07,V08,V38,V40,V42,V44,V46,V48

G14:V01,V02,V06,V07,V08,V38,V40,V42,V44,V46,V48

G07:V01,V02,V31,V35,V38,V42,V46

X
No recurrent
activity

Open valve
group

13>7

7>9

9>0

0>5

5>8

8>13

9>4

4>5

1w 1m 6m YTD 1y all

Figure A.15: Gantt chart of the ninth cohesive time period selected of the
second refinery, comprehending 15 production cycles.

Appendix A. Gantt Charts 108

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00

G01:-

G08:V43,V47

G11:V43,V47

G02:V01,V02,V14,V18,V19,V37,V41,V44,V45,V48

G03:V01,V02,V09,V11,V37,V41,V42,V44,V45,V48,V50

G07:V01,V02,V44,V48

G00:V01,V02,V12,V13,V14,V32,V34,V37,V39,V41,V44,V45,V48,V52

G12:V01,V02,V12,V13,V14,V20,V23,V36,V37,V39,V41,V45

G13:V01,V02,V03,V05,V31,V35,V36,V38,V39,V41,V42,V45,V46,V49

G04:V01,V02,V08,V16,V17,V31,V35,V36,V38,V39,V42,V46

G05:V01,V02,V06,V07,V08,V25,V26,V38,V40,V42,V44,V46,V48,V51

G09:V08,V21,V22,V27,V38,V40,V42,V46

G10:V06,V07,V08,V21,V22,V27,V38,V40,V42

G06:V27,V28,V29,V40

G14:V27,V28,V29,V40

X
No recurrent
activity

Open valve
group

5>4

4>13

13>12

12>0

0>2

2>3

7>5

3>2

2>7

1w 1m 6m YTD 1y all

Figure A.16: Gantt chart of the tenth cohesive time period selected of the
second refinery, comprehending 11 production cycles.

day 01-00:00 day 01-06:00 day 01-12:00 day 01-18:00 day 02-00:00 day 02-06:00 day 02-12:00 day 02-18:00

G02:V01,V02,V03,V31,V35

G00:V01,V02,V08,V16,V17,V31,V35,V38,V42,V46

G05:V28,V29

G08:V09,V11,V24,V28,V29,V42,V46,V50

G11:V38,V42,V46

G10:V01,V02,V38,V40,V42,V44,V46,V48

G03:V01,V02,V27,V40,V44,V48

G01:V01,V02,V27,V37,V40,V41,V44,V45,V48

G04:V01,V02,V14,V18,V19,V37,V41,V45

G09:V01,V02,V12,V13,V14,V20,V23,V36,V37,V39,V41,V43,V45,V47

G12:V01,V02,V12,V13,V14,V20,V23,V36,V37,V39,V41,V43,V45,V47

G06:V36,V39,V43,V47

G13:V32,V34,V39,V43,V44,V47,V48,V52

G07:V08,V25,V26,V43,V47,V51

G14:V06,V07,V08,V21,V22,V27

X
No recurrent
activity

Open valve
group

1w 1m 6m YTD 1y all

Figure A.17: Gantt chart of the eleventh cohesive time period selected of the
second refinery, comprehending 21 production cycles.

B
Detailed Result Tables

This appendix has the complementary tables for the Gene Expression and
Natural Language Processing applications presented in chapter 6.

Appendix B. Detailed Result Tables 110

Original PCA Zhang Thresholding BackDisc
GEO matrix rows cols Sp G Err time Err time Spars Err W time H time Spars Err

(#) (#) (%) (%) (s) (%) (s) (%) (%) (s) (s) (%) (%)

GSE11223 40991 404 24 10 31 64 59 8 6 93 150 3 20 65
GSE11223 40991 404 24 20 27 98 54 6 19 95 169 4 20 62
GSE11223 40991 404 24 50 22 306 50 10 13 85 1780 25 21 59
GSE1133-GPL1073 31373 244 24 10 30 30 58 3 5 96 58 1 21 65
GSE1133-GPL1073 31373 244 24 20 27 55 53 3 3 96 58 2 23 64
GSE1133-GPL1073 31373 244 24 50 20 181 48 5 12 83 1402 11 22 56
GSE1133-GPL1074 11391 316 24 10 43 13 64 1 4 96 10 0 19 76
GSE1133-GPL1074 11391 316 24 20 40 24 61 1 2 97 13 0 22 77
GSE1133-GPL1074 11391 316 24 50 34 73 57 2 9 90 132 6 20 70
GSE1133-GPL96 22283 316 24 10 40 27 65 3 7 93 37 1 19 73
GSE1133-GPL96 22283 316 24 20 37 48 60 2 3 95 41 3 20 73
GSE1133-GPL96 22283 316 24 50 30 145 55 4 13 86 1075 10 21 67
GSE12417-GPL570 54675 158 24 10 16 36 45 4 4 95 112 1 24 48
GSE12417-GPL570 54675 158 24 20 13 69 39 3 19 98 127 1 24 45
GSE12417-GPL570 54675 158 24 50 9 239 35 4 7 88 194 10 24 43
GSE12417-GPL96 22283 326 24 10 16 29 46 3 6 92 39 1 23 47
GSE12417-GPL96 22283 326 24 20 14 49 41 2 18 95 53 1 23 46
GSE12417-GPL96 22283 326 24 50 11 141 36 3 17 89 973 4 23 45
GSE12417-GPL97 22477 326 24 10 15 24 45 2 5 94 37 1 22 48
GSE12417-GPL97 22477 326 24 20 13 45 40 2 14 93 50 2 23 45
GSE12417-GPL97 22477 326 24 50 11 133 36 3 16 91 933 9 23 44
GSE13355 54675 360 25 10 63 92 77 11 6 97 241 2 12 90
GSE13355 54675 360 25 20 57 192 74 15 9 94 246 2 12 89
GSE13355 54675 360 25 50 48 411 70 15 7 93 381 9 13 87
GSE13576 54675 418 24 10 18 76 48 10 4 97 277 3 23 52
GSE13576 54675 418 24 20 17 146 43 9 16 94 314 6 24 48
GSE13576 54675 418 24 50 14 430 39 12 18 92 2526 30 23 48
GSE1726 23880 334 24 10 57 39 76 4 8 96 46 0 13 89
GSE1726 23880 334 24 20 51 58 72 3 5 96 48 1 14 87
GSE1726 23880 334 24 50 41 167 67 6 11 91 79 2 15 84
GSE1726 23880 334 24 100 31 350 62 6 11 89 2984 10 17 80
GSE1888 15923 308 24 10 15 18 44 1 4 95 19 0 24 45
GSE1888 15923 308 24 20 13 32 38 1 16 95 27 1 24 43
GSE1888 15923 308 24 50 10 96 35 2 15 90 394 3 23 43
GSE19392 22277 338 24 10 13 25 41 2 5 94 38 1 24 43
GSE19392 22277 338 24 20 12 44 36 2 13 94 52 1 24 40
GSE19392 22277 338 24 50 9 129 33 2 9 90 202 7 24 39
GSE19392 22277 338 24 100 6 285 31 2 6 92 535 25 24 40
GSE19429 54675 400 25 10 14 66 44 9 3 96 251 2 23 45
GSE19429 54675 400 25 20 13 127 38 7 12 93 280 4 24 43
GSE19429 54675 400 25 50 11 380 35 9 12 89 2608 21 24 43
GSE21521 54675 308 25 10 72 87 81 11 5 98 248 1 7 95
GSE21521 54675 308 25 20 66 169 78 13 7 97 208 1 8 94
GSE21521 54675 308 25 50 55 374 74 15 6 95 237 3 10 91
GSE21521 54675 308 25 100 41 784 70 15 9 91 398 12 13 82
GSE22845 54675 308 25 10 78 88 81 9 0 100 205 0 0 100
GSE22845 54675 308 25 20 73 135 79 8 1 99 212 1 1 97
GSE22845 54675 308 25 50 61 366 76 12 4 97 234 4 9 93
GSE22845 54675 308 25 100 44 793 72 15 9 92 355 12 10 84
GSE27272 24526 366 24 10 23 60 55 7 11 85 56 0 23 56
GSE27272 24526 366 24 20 22 60 48 3 3 96 55 1 23 57
GSE27272 24526 366 24 50 17 182 44 4 8 90 172 8 24 52

Appendix B. Detailed Result Tables 111

Original PCA Zhang Thresholding BackDisc
GEO matrix rows cols Sp G Err time Err time Spars Err W time H time Spars Err

(#) (#) (%) (%) (s) (%) (s) (%) (%) (s) (s) (%) (%)

GSE27567-GPL1261 45101 186 24 10 11 31 41 3 6 91 88 1 24 41
GSE27567-GPL1261 45101 186 24 20 10 60 35 2 17 90 105 1 24 38
GSE27567-GPL1261 45101 186 24 50 6 209 31 4 18 93 1150 4 24 38
GSE27567-GPL570 54675 324 24 10 12 59 41 8 4 96 220 2 24 42
GSE27567-GPL570 54675 324 24 20 11 113 35 5 13 89 241 3 24 40
GSE27567-GPL570 54675 324 24 50 9 353 32 9 13 86 2308 21 23 39
GSE30310 4776 332 24 10 73 9 82 0 6 99 3 0 6 96
GSE30310 4776 332 24 20 64 15 78 1 6 97 3 0 8 94
GSE30310 4776 332 24 50 51 36 74 1 7 94 6 0 11 88
GSE30310 4776 332 24 100 37 73 69 1 10 90 101 1 13 82
GSE30999 54675 340 24 10 7 75 38 9 5 93 277 2 24 32
GSE30999 54675 340 24 20 6 108 30 6 12 88 337 6 24 31
GSE30999 54675 340 24 50 4 426 26 7 10 91 639 24 24 30
GSE30999 54675 340 24 100 3 906 24 11 5 92 1788 25 24 31
GSE32474 54675 348 24 10 17 65 47 8 5 96 233 2 24 48
GSE32474 54675 348 24 20 15 121 41 7 15 93 284 5 24 46
GSE32474 54675 348 24 50 11 378 38 9 16 89 2817 15 23 45
GSE3578 54359 312 24 10 16 55 46 8 3 97 197 2 22 52
GSE3578 54359 312 24 20 14 104 40 6 14 95 230 3 24 45
GSE3578 54359 312 24 50 10 334 36 9 18 89 2050 12 24 43
GSE4115 22215 384 25 10 13 34 45 3 5 92 47 1 23 43
GSE4115 22215 384 25 20 11 54 38 3 18 91 64 2 24 42
GSE4115 22215 384 25 50 9 153 34 3 17 92 695 6 24 40
GSE4290 54613 360 24 10 23 70 51 9 4 96 242 2 23 56
GSE4290 54613 360 24 20 21 128 47 7 18 97 283 3 23 54
GSE4290 54613 360 24 50 18 391 43 9 5 93 356 25 24 53
GSE50948 54675 312 24 10 22 62 49 7 5 95 211 2 23 54
GSE50948 54675 312 24 20 21 114 44 6 16 96 241 3 23 51
GSE50948 54675 312 24 50 18 327 42 7 8 93 601 17 23 52
GSE54514 24840 326 25 10 33 34 59 3 7 93 48 1 22 66
GSE54514 24840 326 25 20 30 57 55 3 2 97 49 2 22 68
GSE54514 24840 326 25 50 24 164 50 4 8 92 135 9 22 64
GSE6919-GPL8300 12625 342 24 10 31 16 56 1 5 96 14 0 21 65
GSE6919-GPL8300 12625 342 24 20 29 28 52 1 0 99 13 0 24 71
GSE6919-GPL8300 12625 342 24 50 24 84 49 2 5 94 53 5 23 61
GSE6919-GPL92 12620 336 24 10 38 15 61 1 4 96 13 0 22 71
GSE6919-GPL92 12620 336 24 20 36 30 57 1 1 98 14 0 20 74
GSE6919-GPL92 12620 336 24 50 30 83 54 2 5 94 67 6 22 67
GSE6919-GPL93 12646 330 24 10 40 17 62 1 6 95 15 0 21 70
GSE6919-GPL93 12646 330 24 20 38 28 58 1 0 99 13 0 24 77
GSE6919-GPL93 12646 330 24 50 32 83 55 2 3 96 25 4 21 71
GSE755 12625 346 24 10 28 16 53 1 4 97 15 0 22 61
GSE755 12625 346 24 20 26 29 49 1 14 97 21 1 23 58
GSE755 12625 346 24 50 21 86 46 1 16 91 600 6 22 59
GSE9820 20589 306 24 10 16 24 51 2 9 87 30 1 23 51
GSE9820 20589 306 24 20 14 42 43 2 9 85 34 2 24 43
GSE9820 20589 306 24 50 11 121 37 3 15 79 591 4 24 41
GSE9820 20589 306 24 100 7 265 34 3 11 84 2570 15 24 40

Appendix B. Detailed Result Tables 112

Original PCA Zhang Thresholding BackDisc
corpus name cols min words rows Sp G Err T Err T Sp Err W T H T Sp Err

(#) (#) (#) (%) (%) (s) (%) (s) (%) (%) (s) (s) (%) (%)

abc 100 0 3189 13 10 72 2 85 0 1 97 0 0 2 92
abc 100 0 3189 13 50 30 10 68 0 5 77 1 0 7 64
abc 100 100 2627 13 10 72 2 85 0 2 97 0 0 2 94
abc 100 100 2627 13 50 30 9 68 0 6 78 1 0 7 66
abc 300 0 3189 8 10 82 4 89 0 0 99 0 0 0 97
abc 300 0 3189 8 50 60 17 81 0 1 91 1 0 2 86
abc 300 100 2627 9 10 83 4 89 0 0 99 0 0 0 97
abc 300 100 2627 9 50 60 14 82 0 1 92 1 0 2 86
brown 100 0 15667 4 10 75 9 89 0 0 93 3 0 0 90
brown 100 0 15667 4 50 33 49 71 0 2 75 5 0 2 62
brown 100 100 3530 9 10 78 2 88 0 1 95 0 0 1 92
brown 100 100 3530 9 50 34 12 71 0 4 75 1 0 5 63
brown 300 0 15667 3 10 86 18 93 0 0 97 4 0 0 95
brown 300 0 15667 3 50 63 72 85 0 0 88 7 0 0 82
brown 300 100 3530 6 10 87 5 93 0 0 98 0 0 0 96
brown 300 100 3530 6 50 65 17 84 0 1 89 1 0 1 84
gutenberg 100 0 47887 4 10 71 29 88 0 0 93 16 0 0 89
gutenberg 100 0 47887 4 50 30 151 70 1 2 74 24 0 3 61
gutenberg 100 100 5523 11 10 75 3 86 0 1 97 1 0 1 93
gutenberg 100 100 5523 11 50 31 18 69 0 5 76 3 0 7 62
gutenberg 300 0 47887 2 10 82 61 92 1 0 96 23 0 0 94
gutenberg 300 0 47887 2 50 58 210 82 1 0 86 35 0 0 80
gutenberg 300 100 5523 7 10 84 8 91 0 0 99 1 0 0 97
gutenberg 300 100 5523 7 50 61 28 82 0 1 89 3 0 2 82
inaugural 100 0 1515 8 10 71 1 86 0 1 95 0 0 1 91
inaugural 100 0 1515 8 50 28 5 68 0 4 74 0 0 5 62
inaugural 100 100 509 12 10 73 0 85 0 1 98 0 0 1 95
inaugural 100 100 509 12 50 26 2 67 0 5 78 0 0 7 68
inaugural 300 0 1515 5 10 82 2 90 0 0 98 0 0 0 96
inaugural 300 0 1515 5 50 55 8 81 0 1 88 0 0 1 83
inaugural 300 100 509 8 10 82 1 90 0 0 99 0 0 0 98
inaugural 300 100 509 8 50 52 3 80 0 2 93 0 0 2 90
movie_reviews 100 0 2000 16 10 80 1 86 0 0 99 0 0 1 96
movie_reviews 100 0 2000 16 50 36 7 71 0 6 79 1 0 8 69
movie_reviews 100 100 1999 16 10 80 1 86 0 1 99 0 0 1 96
movie_reviews 100 100 1999 16 50 35 7 71 0 6 80 1 0 8 69
movie_reviews 300 0 2000 13 10 89 2 89 0 0 99 0 0 0 99
movie_reviews 300 0 2000 13 50 67 11 83 0 2 94 1 0 2 90
movie_reviews 300 100 1999 13 10 89 3 89 0 0 100 0 0 0 100
movie_reviews 300 100 1999 13 50 67 11 83 0 1 95 1 0 2 90
reuters 100 0 11887 10 10 67 7 84 0 1 97 3 0 2 94
reuters 100 0 11887 10 50 28 40 68 0 4 77 6 0 6 63
reuters 100 100 5903 13 10 68 4 84 0 2 97 1 0 3 93
reuters 100 100 5903 13 50 28 19 67 0 6 77 3 0 8 64
reuters 300 0 11887 6 10 77 18 89 0 0 98 4 0 0 96
reuters 300 0 11887 6 50 55 60 80 0 1 90 7 0 2 85
reuters 300 100 5903 9 10 79 8 89 0 0 99 2 0 0 96
reuters 300 100 5903 9 50 57 32 80 0 2 92 3 0 2 87
webtext 100 0 3247 6 10 68 2 85 0 1 93 0 0 1 89
webtext 100 0 3247 6 50 23 10 65 0 3 70 1 0 4 56
webtext 100 100 627 9 10 59 0 80 0 2 93 0 0 3 90
webtext 100 100 627 9 50 14 4 57 0 6 67 0 0 7 52
webtext 300 0 3247 3 10 77 4 89 0 0 96 0 0 0 94
webtext 300 0 3247 3 50 49 16 78 0 1 84 1 0 1 77
webtext 300 100 627 6 10 70 1 85 0 1 95 0 0 1 92
webtext 300 100 627 6 50 41 4 73 0 2 86 0 0 3 79

	Binary Matrix Factorization Post-processing and Applications
	Resumo
	Table of contents
	Introduction
	The outer product view
	Objectives and Scope
	Work organization

	Related Work
	Algorithmic approaches
	Applications
	The gap in the literature

	Method and proposed algorithms
	Formulation
	The column sub-problem
	Column Sub-Problem Example
	The Set representation
	Set Notation Nomenclature
	The example revisited
	The BackColumn algorithm for the column sub-problem
	The intuition behind the cut-off gains
	Proposed pipeline and the BackDisc Algorithm
	The PCA/SVD lowerbound
	The problem of the Boolean Matrix Multiplication

	Small Synthetic Cases and Algorithm Comparison
	Case A
	Case B
	Case C

	Main Application: Process Mining for Petrochemical Batch Processes
	Pipeline
	Experiments

	Other applications: Gene Expression, Topic Modelling, Recommendation Systems
	Comparison to other datasets in the literature
	Gene Expression
	Topic modelling
	Recommendation Systems

	Discussion
	Summary of results
	Strengths and Weaknesses of this approach
	Future Work

	Bibliography
	Gantt Charts
	Detailed Result Tables

